Skip to main content
Log in

Parameter design for a vibration absorber with time-delayed feedback control

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Hermann, F.: Device for damping vibrations of bodies. U.S. Patent Application No. 989,958 (1909)

  2. Benacchio, S., Malher, A., Boisson, J., et al.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85, 893–911 (2016)

    Article  MathSciNet  Google Scholar 

  3. Acar, M.A., Yilmaz, C.: Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332, 231–245 (2013)

    Article  Google Scholar 

  4. Shui, X., Wang, S., Shui, X., et al.: Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness. Mech. Syst. Signal Process. 100, 330–343 (2018)

    Article  Google Scholar 

  5. Sun, S., Yang, J., Li, W., et al.: Development of an MRE adaptive tuned vibration absorber with self-sensing capability. Smart Mater. Struct. 24, 095012 (2015)

    Article  Google Scholar 

  6. Kumbhar, S.B., Chavan, S.P., Gawade, S.S.: Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech. Syst. Signal Process. 100, 208–223 (2018)

    Article  Google Scholar 

  7. Lin, J., Huang, C.J., Chang, J., et al.: Active-passive vibration absorber of beam-cart-seesaw system with piezoelectric transducers. J. Sound Vib. 329, 4109–4123 (2010)

    Article  Google Scholar 

  8. Shan, J., Liu, H.T., Sun, D.: Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15, 487–503 (2005)

    Article  Google Scholar 

  9. El-Ganaini, W.A., Saeed, N.A., Eissa, M.: Positive position feedback (PPF) controller for absorption of nonlinear system vibration. Nonlinear Dyn. 72, 517–537 (2013)

    Article  Google Scholar 

  10. El-Ganaini, W.A., Kandil, A., Eissa, M., et al.: Effects of delayed time active controller on the vibration of a nonlinear magnetic levitation system to multi excitations. J. Vib. Control 4, 1074–1090 (2014)

    Google Scholar 

  11. Mcdaid, A.J., Mace, B.R.: A robust adaptive tuned vibration absorber using semi-passive shunt electronics. IEEE Trans. Ind. Electron. 63, 5069–5077 (2016)

    Google Scholar 

  12. Kim, S.M., Wang, S., Brennan, M.J.: Optimal and robust modal control of a flexible structure using an active dynamic vibration absorber. Smart Mater. Struct. 20, 45003–45013 (2011)

    Article  Google Scholar 

  13. Lin, J.: An active vibration absorber of smart panel by using a decomposed parallel fuzzy control structure. Eng. Appl. Artif. Intell. 18, 985–998 (2005)

    Article  Google Scholar 

  14. Huang, S.J., Man, R.J.: Active vibration control of a dynamic absorber using fuzzy algorithms. Mechatronics 6, 317–336 (1996)

    Article  Google Scholar 

  15. Lin, J., Liu, W.Z.: Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam. J. Sound Vib. 296, 567–582 (2006)

    Article  Google Scholar 

  16. Chang, C.S., Liu, T.S.: LQG controller for active vibration absorber in optical disk drive. IEEE Trans. Magn. 43, 799–801 (2007)

    Article  Google Scholar 

  17. Thenozhi, S., Yu, W.: Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation. Int. J. Syst. Sci. 47, 1258–1267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, R.P., Sinha, A.: Neural network based active vibration absorber with state feedback control. J. Sound Vib. 190, 121–128 (1996)

    Article  Google Scholar 

  19. Liu, Y., Zhao, S.: Controllability for a class of linear time-varying impulsive systems with time delay in control input. IEEE Trans. Autom. Control 56, 395–399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, H.P., Zhang, N.: H-infinity, control for buildings with time delay in control via linear matrix inequalities and genetic algorithms. Eng. Struct. 30, 81–92 (2008)

    Article  Google Scholar 

  21. Chang, P.H., Kim, D.S., Park, K.C.: Robust force/position control of a robot manipulator using time-delay control. Control Eng. Pract. 3, 1255–1264 (1995)

    Article  Google Scholar 

  22. Xu, J., Cao, W.: Synthesized sliding mode and time-delay control for a class of uncertain systems. Automatica 36, 1909–1914 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shin, Y.H., Kim, K.J.: Performance enhancement of pneumatic vibration isolation tables in low frequency range by time delay control. J. Sound Vib. 321, 537–553 (2009)

    Article  Google Scholar 

  24. Shin, Y.H., Kim, K.J., Chang, P.H., et al.: Three degrees of freedom active control of pneumatic vibration isolation table by pneumatic and time delay control technique. J. Vib. Acoust. 132, 051013 (2010)

    Article  Google Scholar 

  25. Xu, J., Sun, X.: A multi-directional vibration isolator based on quasi-zero-stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Article  Google Scholar 

  26. Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)

    Article  Google Scholar 

  27. Sun, X., Zhang, S., Xu, J.: Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. Int. J. Mech. Sci. 138, 398–408 (2018)

    Article  Google Scholar 

  28. Jiao, G., Sun, X.: A six-direction absolute displacement sensor for time-delayed control based on quasi-zero-stiffness property. Int. J. Distrib. Sens. Netw. 12, 1550147716673844 (2016)

    Google Scholar 

  29. Sun, X., Wang, F., Xu, J.: Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay. J. Vib. Acoust. (2018). https://doi.org/10.1115/1.4041369

    Google Scholar 

  30. Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018)

    Article  Google Scholar 

  31. Cheng, C., Li, S., Wang, Y., et al.: On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback. J. Sound Vib. 378, 76–91 (2016)

    Article  Google Scholar 

  32. Olgac, N., Holm-Hansen, B.T.: A novel active vibration absorption technique-delayed resonator. J. Sound Vib. 176, 93–104 (1994)

    Article  MATH  Google Scholar 

  33. Olgac, N., Elmali, H., Vijayan, S.: Introduction to the dual frequency fixed delayed resonator. J. Sound Vib. 189, 355–367 (1996)

    Article  Google Scholar 

  34. Olgac, N., Jalili, N.: Modal analysis of flexible beams with delayed resonator vibration absorber: theory and experiments. Sound Vib. 218, 307–331 (1998)

    Article  Google Scholar 

  35. Jalili, N., Olgac, N.: Multiple delayed resonator vibration absorbers for multi-degree-of-freedom mechanical structures. J. Sound Vib. 223, 567–585 (1999)

    Article  Google Scholar 

  36. Filipović, D., Olgac, N.: Delayed resonator with speed feedback—design and performance analysis. Mechatronics 12, 393–413 (2002)

    Article  Google Scholar 

  37. Dan, P., Vyhlídal, T., Olgac, N.: Delayed resonator with distributed delay in acceleration feedback—design and experimental verification. IEEE/ASME Trans. Mechatronics 21, 2120–2131 (2015)

    Google Scholar 

  38. Kučera, V., Dan, P., Vyhlídal, T., et al.: Extended delayed resonators—design and experimental verification. Mechatronics 41, 29–44 (2017)

    Article  Google Scholar 

  39. Kammer, A.S., Olgac, N.: Delayed-feedback vibration absorbers to enhance energy harvesting. J. Sound Vib. 363, 54–67 (2016)

    Article  Google Scholar 

  40. Kammer, A.S., Olgac, N.: Delayed feedback control scheme for improved energy harvesting using piezoelectric networks. J. Intell. Mater. Syst. Struct. 29, 1546–1559 (2018)

    Article  Google Scholar 

  41. Liu, J., Liu, K.: A tunable electromagnetic vibration absorber: characterization and application. J. Sound Vib. 295, 708–724 (2006)

    Article  Google Scholar 

  42. Liu, J., Liu, K.: Application of an active electromagnetic vibration absorber in vibration absorption. Struct. Control Health Monit. 17, 278–300 (2010)

    Google Scholar 

  43. Xu, J., Sun, Y.: Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mech. Sin. 31, 229–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, Y., Xu, J.: Experiments and analysis for a controlled mechanical absorber considering delay effect. J. Sound Vib. 339, 25–37 (2015)

    Article  Google Scholar 

  45. Zhao, Y.Y., Xu, J.: Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dyn. 67, 735–753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, X., Song, Y.: Dynamical performances of a vibration absorber for continuous structure considering time-delay coupling. Shock Vib. 2, 1–15 (2016)

    Google Scholar 

  47. Zhang, X., Xu, J., Ji, J.: Modelling and tuning for a time-delayed vibration absorber with friction. J. Sound Vib. 424, 137–157 (2018)

    Article  Google Scholar 

  48. Zhang, X., Xu, J., Feng, Z.: Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dyn. 88, 937–954 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11572224 and 11772229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xu, J. Parameter design for a vibration absorber with time-delayed feedback control. Acta Mech. Sin. 35, 624–640 (2019). https://doi.org/10.1007/s10409-018-0822-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0822-8

Keywords

Navigation