Skip to main content
Log in

Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inspired by Ostrich anti-vibration and shock and vibration absorption properties, a novel bio-inspired vibration isolation–absorption (BIVIA) system is presented to design wideband vibration isolation bandwidth, low-frequency/ultra-low-frequency vibration isolation and high stability using toe-leg-spine coupling structure. Considering the kinematic relationship between skeletons and muscle/tendon, the geometrical relationships and dynamical equations of the BIVIA system are deduced for theoretical analysis and model verification. The influences of different parameters on loading capacity, dynamic stability, quasi-zero stiffness (QZS) zone, vibration isolation–absorption performance and vibration transmissibility are discussed. It discovers that high loading capacity and extended QZS zone are achieved by coupled vibration isolation–absorption structures. Moreover, the desirable and adjustable vibration isolation–absorption performance of the BIVIA structure can be obtained by designing key parameters. The BIVIA structure presents a practical method for bio-inspired vibration isolation and could be used in engineering and manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in this article.

References

  1. Dai, H.H., Jing, X.J., Wang, Y., Yue, X.K., Yuan, J.P.: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mech. Syst. Signal Pr. 105, 214–240 (2018)

    Article  Google Scholar 

  2. Dai, H.H., Cao, X.Y., Jing, X.J., Wang, X., Yue, X.K.: Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mech. Syst. Signal Pr. 142, 106785 (2020)

    Article  Google Scholar 

  3. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1), 88–103 (2009)

    Article  Google Scholar 

  4. Zhang, J.Z., Li, D., Dong, S.: An ultra-low frequency parallel connection nonlinear isolator for precision instruments. Key Eng. Mater. 257, 231–236 (2004)

    Article  Google Scholar 

  5. Chen, X., Asce, H.T.Y.Y.M., Shan, J.Z., Hansma, P.K.: Bio-inspired passive optimized base-isolation system for seismic mitigation of building structures. J. Eng. Mech. 142(1), 04015061 (2016)

    Article  Google Scholar 

  6. Yan, G., Zou, H.X., Zhao, L.C., Wu, Z.Y., Zhang, W.M.: Bio-inspired vibration isolation: methodology and design. Appl. Mech. Rev. 73, 020801 (2021)

    Article  Google Scholar 

  7. Yang, T., Zhou, S.X., Fang, S.T., Qin, W.Y., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 8, 031317 (2021)

    Article  Google Scholar 

  8. Deng, T.C., Wen, G.L., Ding, H., Lu, Z.Q., Chen, L.Q.: A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mech. Syst. Signal Pr. 145, 106967 (2020)

    Article  Google Scholar 

  9. Sun, X.T., Wang, F., Xu, J.: A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. Int. J. Mech. Sci. 193(1), 106166 (2021)

    Article  Google Scholar 

  10. Sun, X.T., Qi, Z.F., Xu, J.: A novel multi-layer isolation structure for transverse stabilization inspired by neck structure. Acta Mech. Sin. 38, 521543 (2022)

    Article  MathSciNet  Google Scholar 

  11. Liu, H.P., Xiao, K.L., Zhao, P.P., Zhu, D.M.: Theoretical and experimental studies of a novel nested oscillator with a high-damping characteristic. J. Vib. Control 27(13–14), 1479–1497 (2021)

    Article  MathSciNet  Google Scholar 

  12. Liu, G.Y., Zhao, P.P., Liu, H.P., Shen, H.X.: Study on performance of a novel high-damping vibration isolator with nested X-shaped structure. J. Hunan Univ. Nat. Sci. 48(2), 31–37 (2021)

    Google Scholar 

  13. Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Pr. 66, 723–742 (2016)

    Article  Google Scholar 

  14. Chai, Y.Y., Jing, X.J., Chao, X.: X-shaped mechanism based enhanced tunable QZS property for passive vibration isolation. Int. J. Mech. Sci. 218, 107077 (2022)

    Article  Google Scholar 

  15. Wang, Y., Jing, X.J., Guo, Y.Q.: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints. Nonlinear Dyn. 95, 445–464 (2019)

    Article  Google Scholar 

  16. Li, M.X., Jing, J.: A bistable X-structured electromagnetic wave energy converter with a novel mechanical-motion-rectifier: Design, analysis, and experimental tests. Energy Conver. Manage. 244, 114466 (2021)

    Article  Google Scholar 

  17. Sun, B., Jing, X.J.: A tracked robot with novel bio-inspired passive “legs.” Robot. Biomim. 4, 18 (2017)

    Article  Google Scholar 

  18. Jing, X.J., Zhang, L.L., Feng, X., Sun, B., Li, Q.K.: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers. Mech. Syst. Signal Pr. 118, 317–339 (2019)

    Article  Google Scholar 

  19. Wang, X., Yue, X.K., Dai, H.H., Yuan, J.P.: Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system. Acta Astronaut. 168, 1–22 (2020)

    Article  Google Scholar 

  20. Niu, M.Q., Chen, L.Q.: Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Pr. 179, 109348 (2022)

    Article  Google Scholar 

  21. Ling, P., Miao, L., Zhang, W., Wu, C., Yan, B.: Cockroach-inspired structure for low-frequency vibration isolation. Mech. Syst. Signal Pr. 171, 108955 (2022)

    Article  Google Scholar 

  22. Feng, X., Jing, X.J., Xu, Z.D., Guo, Y.Q.: Bio-inspired anti-vibration with nonlinear inertia coupling. Mech. Syst. Signal Pr. 124, 562–595 (2019)

    Article  Google Scholar 

  23. Feng, X., Jing, X.J.: Human body inspired vibration isolation: Beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia. Mech. Syst. Signal Pr. 117, 786–812 (2019)

    Article  Google Scholar 

  24. Jiang, G.Q., Jing, X.J., Guo, Y.Q.: A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Signal Pr. 138, 106552 (2020)

    Article  Google Scholar 

  25. Zhou, S.Z., Liu, Y.L., Jiang, Z.Y., Ren, Z.H.: Nonlinear dynamic behavior of a bio-inspired embedded X-shaped vibration isolation system. Nonlinear Dyn. 110, 153–175 (2022)

    Article  Google Scholar 

  26. Zhang, Y.F., Kong, X.R., Yue, C.F., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105, 167–190 (2021)

    Article  Google Scholar 

  27. Taghipour, J., Dardel, M.: Steady state dynamics and robustness of a harmonically excited essentially nonlinear oscillator coupled with a two-DOF nonlinear energy sink. Mech. Syst. Signal Pr. 62, 164–182 (2015)

    Article  Google Scholar 

  28. Yang, J., Xiong, Y.P., Xing, J.T.: Power flow behaviour and dynamic performance of a nonlinear vibration absorber coupled to a nonlinear oscillator. Nonlinear Dyn. 8(3), 1063–1079 (2015)

    Article  Google Scholar 

  29. Shi, B.Y., Yang, J.: Quantification of vibration force and power flow transmission between coupled nonlinear oscillators. Int. J. Dyn. Control 8(2), 418–435 (2020)

    Article  MathSciNet  Google Scholar 

  30. Huang, D.M., Zhou, S.X., Han, Q., Litak, G.: Response analysis of the nonlinear vibration energy harvester with an uncertain parameter. P. I. Mech. Eng. K-J. Mul. 234(2), 393–407 (2020)

    Google Scholar 

  31. Huang, D.M., Li, R.H., Yang, G.D.: On the dynamic response regimes of a viscoelastic isolation system integrated with a nonlinear energy sink. Commun. Nonlinear Sci. 19, 104916 (2019)

    Article  MathSciNet  Google Scholar 

  32. Qian, F., Zuo, L.: Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model. J. Sound Vib. 509, 116246 (2021)

    Article  Google Scholar 

  33. Bian, J., Jing, X.J.: A nonlinear X-shaped structure based tuned mass damper with multi-variable optimization (X-absorber). Commun. Nonlinear Sci. 99, 105829 (2021)

    Article  MathSciNet  Google Scholar 

  34. Jiang, G.Q., Wang, Y., Li, F.M., Jing, X.J.: An integrated nonlinear passive vibration control system and its vibration reduction properties. J. Sound Vib. 509, 116231 (2021)

    Article  Google Scholar 

  35. Song, X., Chai, Z., Zhang, Y., Zang, J., Xu, K.: Nonlinear vibration isolation via an innovative active bionic variable stiffness adapter (ABVSA). Nonlinear Dyn. 109, 353–370 (2022)

    Article  Google Scholar 

  36. Yan, G., Zou, H., Wang, S., Zhao, L., Wu, Z., Zhang, W.M.: Bio-inspired toe-like structure for low-frequency vibration isolation. Mech. Syst. Signal Process. 162, 108010 (2022)

    Article  Google Scholar 

  37. Song, Y., Zhang, C., Li, Z.L., Li, Y.: Study on dynamic characteristics of bio-inspired vibration isolation platform. J. Vib. Control 28(11–12), 1470–1485 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The project is supported by the Natural Science Foundation of China (No. 52275091), Natural Science Foundation of Liaoning Province (No. 2022-MS-125) and Fundamental Research Funds for the Central Universities (No. N2303011).

Author information

Authors and Affiliations

Authors

Contributions

SZ contributed to conceptualization, formal analysis, writing—original draft, and writing—review and editing. BH contributed to formal analysis. LZ involved in visualization. PX contributed to software. TY and ZR involved in investigation.

Corresponding author

Correspondence to Shihua Zhou.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{gathered} F_{x1} = 4k_{tx} \left[ {\gamma_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right) - \frac{{\gamma_{1} L_{1} \cos \alpha_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)}}{{\sqrt {L_{1}^{2} - \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } }}} \right] + 4c_{tx} \frac{{\gamma_{1}^{2} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} }}{{L_{1}^{2} - \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} }} \hfill \\ F_{x2} = 4k_{lx} \left[ { - \left( {\gamma_{2} - \gamma_{3} } \right)\left( {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right) + \frac{{\left( {\gamma_{2} - \gamma_{3} } \right)L_{3} \cos \alpha_{2} \left( {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right)}}{{\sqrt {L_{3}^{2} - \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } }}} \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + 4c_{lx} \frac{{\left( {\gamma_{2} - \gamma_{3} } \right)^{2} \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} }}{{L_{3}^{2} - \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} }} \hfill \\ \end{gathered} $$
(A1)
$$ \begin{gathered} F_{y12} = k_{ty} \left[ {l_{1} \sin \beta_{1} + l_{2} \sin \beta_{2} - \sqrt {l_{1}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } - \sqrt {l_{2}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } } \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \times {\kern 1pt} {\kern 1pt} \left[ {\frac{{\gamma_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)}}{{\sqrt {l_{1}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } }} + \frac{{\gamma_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)}}{{\sqrt {l_{2}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } }}} \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + c_{ty} \left[ {\frac{{\gamma_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)}}{{\sqrt {l_{1}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } }} + \frac{{\gamma_{1} \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)}}{{\sqrt {l_{2}^{2} - L_{1}^{2} + \left( {L_{1} \sin \alpha_{1} - \gamma_{1} y} \right)^{2} } }}} \right]^{2} \hfill \\ F_{y34} = k_{ly} \left[ {l_{3} \sin \beta_{3} + l_{4} \sin \beta_{4} - \sqrt {l_{3}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } - \sqrt {l_{4}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } } \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \times \left[ {\frac{{\left( {\gamma_{2} - \gamma_{3} } \right)\left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]}}{{\sqrt {l_{3}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } }} + \frac{{\left( {\gamma_{2} - \gamma_{3} } \right)\left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]}}{{\sqrt {l_{4}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } }}} \right] \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + c_{ly} \left[ {\frac{{\left( {\gamma_{2} - \gamma_{3} } \right)\left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]}}{{\sqrt {l_{3}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } }} + \frac{{\left( {\gamma_{2} - \gamma_{3} } \right)\left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]}}{{\sqrt {l_{4}^{2} - L_{3}^{2} + \left[ {L_{3} \sin \alpha_{2} + \left( {\gamma_{2} - \gamma_{3} } \right)y} \right]^{2} } }}} \right]^{2} \hfill \\ \end{gathered} $$
(A2)
$$ \begin{gathered} F_{n} = k_{l1} \left( {y_{n1} - y_{b} - z} \right) + c_{l1} \left( {\dot{y}_{n1} - \dot{y}_{b} - \dot{z}} \right){\kern 1pt} + k_{l2} \left( {y_{n1} - y_{n2} } \right) + c_{l2} \left( {\dot{y}_{n1} - \dot{y}_{n2} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \cdots \cdots \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + k_{lj} \left( {y_{ni} - y_{nj - 1} } \right) + c_{li} \left( {\dot{y}_{nj} - \dot{y}_{nj - 1} } \right){\kern 1pt} {\kern 1pt} + k_{lj + 1} \left( {y_{ni} - y_{nj + 1} } \right) + c_{li + 1} \left( {\dot{y}_{nj} - \dot{y}_{nj + 1} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \cdots \cdots \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + k_{{l{\text{N}}}} \left( {y_{{n{\text{N}}}} - y_{{n{\text{N}} - 1}} } \right) + c_{{l{\text{N}}}} \left( {\dot{y}_{{n{\text{N}}}} - \dot{y}_{{n{\text{N}} - 1}} } \right){\kern 1pt} {\kern 1pt} + k_{{l{\text{h}}}} \left( {y_{{n{\text{N}}}} - y_{{\text{h}}} } \right) + c_{{l{\text{h}}}} \left( {\dot{y}_{{n{\text{N}}}} - \dot{y}_{{\text{h}}} } \right) \hfill \\ \end{gathered} $$
(A3)
$$ F_{{\text{h}}} = k_{{l{\text{h}}}} \left( {y_{{\text{h}}} - y_{{n{\text{N}}}} } \right) + c_{{l{\text{h}}}} \left( {\dot{y}_{{\text{h}}} - \dot{y}_{{n{\text{N}}}} } \right) $$
(A4)

Appendix B

$$ F_{{{\text{m}}x}} = \sum\limits_{j = 1}^{2} {\left[ {\frac{{M_{j} + m_{j} }}{2}\left( {\frac{{\partial x_{1} }}{\partial y}} \right)^{2} + \frac{{M_{j + 2} + m_{j + 2} }}{2}\left( {\frac{{\partial x_{2} }}{\partial y}} \right)^{2} } \right]} $$
(B1)
$$ F_{{{\text{m}}J}} = 2\sum\limits_{i = 1}^{4} {J_{i} } \left( {\frac{{\partial \varphi_{i} }}{\partial y}} \right)^{2} + 2\sum\limits_{i = 1}^{4} {I_{i} } \left( {\frac{{\partial \psi_{i} }}{\partial y}} \right)^{2} $$
(B2)
$$ F_{{{\text{m}}\gamma }} = \frac{1}{2}\left[ {M_{1} \gamma_{1}^{2} + M_{2} \gamma_{2}^{2} + M_{3} \left( {\gamma_{2} + \gamma_{3} } \right)^{2} + M_{4} \left( {\gamma_{3} + 1} \right)^{2} } \right] $$
(B3)
$$ F_{{{\text{n}}x}} = \sum\limits_{j = 1}^{2} {\left[ {\frac{{M_{j} + m_{j} }}{2}\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial x_{1} }}{\partial y}} \right)^{2} + \frac{{M_{j + 2} + m_{j + 2} }}{2}\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial x_{2} }}{\partial y}} \right)^{2} } \right]} $$
(B4)
$$ F_{{{\text{n}}J}} = 2\sum\limits_{i = 1}^{4} {J_{i} } \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \varphi_{i} }}{\partial y}} \right)^{2} + 2\sum\limits_{i = 1}^{4} {I_{i} } \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \psi_{i} }}{\partial y}} \right)^{2} $$
(B5)
$$ F_{{{\text{nc}}}} = 4\left[ {c_{{{\text{t}}x}} \left( {\frac{{\partial x_{1} }}{\partial y}} \right)^{2} + c_{lx} \left( {\frac{{\partial x_{2} }}{\partial y}} \right)^{2} } \right] + \left[ {c_{{{\text{t}}y}} \left( {\frac{{\partial \left( {y_{1} + y_{2} } \right)}}{\partial y}} \right)^{2} + c_{ly} \left( {\frac{{\partial \left( {y_{3} + y_{4} } \right)}}{\partial y}} \right)^{2} } \right] $$
(B6)
$$ F_{{{\text{mm}}}} = \frac{{m_{1} }}{2}\left( {\gamma_{1} + \frac{{\partial \dot{y}_{1} }}{{\partial \dot{y}}}} \right)\left( {\gamma_{1} \ddot{y} + \ddot{y}_{1} } \right) + \frac{{m_{2} }}{2}\left( {\gamma_{1} + \frac{{\partial \dot{y}_{2} }}{{\partial \dot{y}}}} \right)\left( {\gamma_{1} \ddot{y} + \ddot{y}_{2} } \right) + \frac{{m_{3} }}{2}\left( {\gamma_{3} + \frac{{\partial \dot{y}_{3} }}{{\partial \dot{y}}}} \right)\left( {\gamma_{3} \ddot{y} + \ddot{y}_{3} } \right) + \frac{{m_{4} }}{2}\left( {\gamma_{3} + \frac{{\partial \dot{y}_{4} }}{{\partial \dot{y}}}} \right)\left( {\gamma_{3} \ddot{y} + \ddot{y}_{4} } \right) $$
(B7)
$$ \begin{gathered} F_{{{\text{nn}}}} = \frac{{m_{1} }}{2}\left[ {\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \dot{y}_{1} }}{{\partial \dot{y}}}} \right) - \frac{{\partial \dot{y}_{1} }}{{\partial \dot{y}}}} \right]\left( {\gamma_{1} \dot{y} + \dot{y}_{1} } \right) + \frac{{m_{2} }}{2}\left[ {\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \dot{y}_{2} }}{{\partial \dot{y}}}} \right) - \frac{{\partial \dot{y}_{2} }}{{\partial \dot{y}}}} \right]\left( {\gamma_{1} \dot{y} + \dot{y}_{2} } \right) \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \frac{{m_{3} }}{2}\left[ {\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \dot{y}_{3} }}{{\partial \dot{y}}}} \right) - \frac{{\partial \dot{y}_{3} }}{{\partial \dot{y}}}} \right]\left( {\gamma_{3} \dot{y} + \dot{y}_{3} } \right) + \frac{{m_{4} }}{2}\left[ {\frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{\partial \dot{y}_{4} }}{{\partial \dot{y}}}} \right) - \frac{{\partial \dot{y}_{4} }}{{\partial \dot{y}}}} \right]\left( {\gamma_{3} \dot{y} + \dot{y}_{4} } \right) \hfill \\ \end{gathered} $$
(B8)
$$ F_{{{\text{d}}x}} = \sum\limits_{j = 1}^{2} {\left[ {\frac{{M_{j} + m_{j} }}{2}\left( {\frac{{\partial x_{1} }}{\partial y}} \right)\left( {\frac{{\partial^{2} x_{1} }}{{\partial y^{2} }}} \right) + \frac{{M_{j + 2} + m_{j + 2} }}{2}\left( {\frac{{\partial x_{2} }}{\partial y}} \right)\left( {\frac{{\partial^{2} x_{2} }}{{\partial y^{2} }}} \right)} \right]} $$
(B9)
$$ F_{{{\text{d}}J}} = 2\sum\limits_{i = 1}^{4} {J_{i} } \left( {\frac{{\partial \varphi_{i} }}{\partial y}} \right)\left( {\frac{{\partial^{2} \varphi_{i} }}{{\partial y^{2} }}} \right) + 2\sum\limits_{i = 1}^{4} {I_{i} } \left( {\frac{{\partial \psi_{i} }}{\partial y}} \right)\left( {\frac{{\partial^{2} \psi_{i} }}{{\partial y^{2} }}} \right) $$
(B10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Hou, B., Zheng, L. et al. Nonlinear property and dynamic stability analysis of a novel bio-inspired vibration isolation–absorption structure. Nonlinear Dyn 112, 887–902 (2024). https://doi.org/10.1007/s11071-023-09084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09084-4

Keywords

Navigation