Skip to main content
Log in

3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In the past few years, 3D printing technology has witnessed an explosive growth, penetrating various aspects of our lives. Current best-in-class 3D printers can fabricate micrometer scale objects, which has made fabrication of microfluidic devices possible. The highest achievable resolution is already at nanometer scale, which is continuing to drop. Since geometric complexity is not a concern for 3D printing, novel 3D microfluidics and lab-on-a-chip systems that are otherwise impossible to produce with traditional 2D microfabrication technology have started to emerge in recent years. In this review, we first introduce the basics of 3D printing technology for the microfluidic community and then summarize its emerging applications in creating novel microfluidic devices. We foresee widespread utilization of 3D printing for future developments in microfluidic engineering and lab-on-a-chip technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • 3DSystems. http://www.3dsystems.com

  • Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80(18):6928–6934

    Article  Google Scholar 

  • Aghaamoo M, Zhang Z, Chen X, Xu J (2015) Deformability-based circulating tumor cell separation with conical-shaped microfilters: concept, optimization, and design criteria. Biomicrofluidics 9(3):034106

    Article  Google Scholar 

  • Alting L, Kimura F, Hansen HN, Bissacco G (2003) Micro engineering. CIRP Ann Manuf Technol 52(2):635–657

    Article  Google Scholar 

  • Anderson KB, Lockwood SY, Martin RS, Spence DM (2013) A 3D printed fluidic device that enables integrated features. Anal Chem 85(12):5622–5626

    Article  Google Scholar 

  • Asproulis N, Kalweit M, Drikakis D (2012) A hybrid molecular continuum method using point wise coupling. Adv Eng Softw 46(1):85–92

    Article  Google Scholar 

  • Au AK, Lee W, Folch A (2014) Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. Lab Chip 14(7):1294–1301

    Article  Google Scholar 

  • Au AK, Bhattacharjee N, Horowitz LF, Chang TC, Folch A (2015) 3D-printed microfluidic automation. Lab Chip 15(8):1934–1941

    Article  Google Scholar 

  • Barry R, Ivanov D (2004) Microfluidics in biotechnology. J Nanobiotechnol 2(1):2

    Article  Google Scholar 

  • Bartolo P, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57(1):235–238

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Article  Google Scholar 

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4(1):261–286

    Article  Google Scholar 

  • Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55(2):155–162

    Article  Google Scholar 

  • Bertsch A, Lorenz H, Renaud P (1998) Combining microstereolithography and thick resist UV lithography for 3D microfabrication. In: Proceedings of the eleventh annual international workshop on micro electro mechanical systems, 1998 (MEMS 98). IEEE, pp 18–23

  • Beuret C, Racine G, Gobet J, Luthier R, De Rooij N (1994) Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating. In: Proceedings of the IEEE workshop on micro electro mechanical systems, 1994 (MEMS’94). IEEE, pp 81–85

  • Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014

    Article  Google Scholar 

  • Bhagat AAS, Hou HW, Li LD, Lim CT, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11(11):1870–1878

    Article  Google Scholar 

  • Bhargava KC, Thompson B, Malmstadt N (2014) Discrete elements for 3D microfluidics. Proc Natl Acad Sci 111(42):15013–15018

    Article  Google Scholar 

  • Bonyár A, Sántha H, Ring B, Varga M, Kovács JG, Harsányi G (2010) 3D rapid prototyping technology (RPT) as a powerful tool in microfluidic development. Procedia Eng 5:291–294

    Article  Google Scholar 

  • Bourell DL, Leu MC, Rosen DW (2009) Roadmap for additive manufacturing: identifying the future of freeform processing. The University of Texas at Austin, Austin

    Google Scholar 

  • Bourell D, Stucker B, Chen Y, Zhou C, Lao J (2011) A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyp J 17(3):218–227

    Article  Google Scholar 

  • Burns M (1993) Automated fabrication: improving productivity in manufacturing. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Campbell I, Bourell D, Gibson I (2012) Additive manufacturing: rapid prototyping comes of age. Rapid Prototyp J 18(4):255–258

    Article  Google Scholar 

  • Chan CY, Huang P-H, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ (2013) Accelerating drug discovery via organs-on-chips. Lab Chip 13(24):4697–4710

    Article  Google Scholar 

  • Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H (2015) Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid Nanofluid 19(1):9–18

    Article  Google Scholar 

  • Cheng Y-L, Lee M-L (2009) Development of dynamic masking rapid prototyping system for application in tissue engineering. Rapid Prototyp J 15(1):29–41

    Article  Google Scholar 

  • Choi J, Chang Y (2006) Analysis of laser control effects for direct metal deposition Process. J Mech Sci Technol 20(10):1680–1690

    Article  Google Scholar 

  • Choi JW, Ha YM, Lee SH, Choi KH (2006) Design of microstereolithography system based on dynamic image projection for fabrication of three-dimensional microstructures. J Mech Sci Technol 20(12):2094–2104

    Article  Google Scholar 

  • Choi J-W, Wicker R, Lee S-H, Choi K-H, Ha C-S, Chung I (2009) Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. J Mater Process Technol 209(15):5494–5503

    Article  Google Scholar 

  • Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4(2):181–187

    Article  Google Scholar 

  • Cohen A, Zhang G, Tseng F-G, Frodis U, Mansfeld F, Will P (1999) EFAB: rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS. In: Twelfth IEEE international conference on micro electro mechanical systems, 1999 (MEMS’99). IEEE, pp 244–251

  • Comina G, Suska A, Filippini D (2013) PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14(2):424–430

    Article  Google Scholar 

  • Crump SS (1991) Fast, precise, safe prototypes with FDM. In: ASME annual winter conference, Atlanta, pp 53–60

  • Dickens Jr ED, Lee BL, Taylor GA, Magistro AJ, Ng H (1999) Selective laser sintering. Google Patents

  • Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    Article  Google Scholar 

  • Do J, Ahn CH (2008) A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab Chip 8(4):542–549

    Article  Google Scholar 

  • Dutta B, Palaniswamy S, Choi J, Song L, Mazumder J (2011) Additive manufacturing by direct metal deposition. Adv Mater Process 169(5):33–36

    Google Scholar 

  • Ehrfeld W, Schmidt A (1998) Recent developments in deep X-ray lithography. J Vac Sci Technol, B 16(6):3526–3534

    Article  Google Scholar 

  • EnvisionTEC (2014). http://www.envisiontec.com. Accessed 1 Dec 2015

  • Esposito A (1969) A simplified method for analyzing hydraulic circuits by analogy. Mach Des 41(24):173

    Google Scholar 

  • Fan L-L, He X-K, Han Y, Zhe J, Zhao L (2015) Continuous 3D particle focusing in a microchannel with curved and symmetric sharp corner structures. J Micromech Microeng 25(3):035020

    Article  Google Scholar 

  • Fang J, Wang W, Zhao S (2015) Fabrication of 3D microfluidic structures. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, Berlin, pp 1069–1082

    Google Scholar 

  • Folch A (2012) Introduction to BioMEMS. CRC Press, Boca Raton

    Google Scholar 

  • French P, Sarro P (1998) Surface versus bulk micromachining: the contest for suitable applications. J Micromech Microeng 8(2):45

    Article  Google Scholar 

  • Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78(2):249–251

    Article  Google Scholar 

  • Galambos PC, Okandan M, Montague S, Smith JH, Paul PH, Krygowski TW, Allen JJ, Nichols CA, Jerome FJI (2004) Surface-micromachined microfluidic devices. Google Patents

  • Gershenfeld N (2012) How to make almost anything: the digital fabrication revolution. Foreign Aff 91:43

    Google Scholar 

  • Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Berlin

    Book  Google Scholar 

  • Gonçalves EM, Oliveira FJ, Silva RF, Neto MA, Fernandes MH, Amaral M, Vallet-Regí M, Vila M (2015) Three-dimensional printed PCL-hydroxyapatite scaffolds filled with CNTs for bone cell growth stimulation. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33432

    Google Scholar 

  • Gong X, Anderson T, Chou K (2012) Review on powder-based electron beam additive manufacturing technology. In: ASME/ISCIE 2012 international symposium on flexible automation, 2012. American Society of Mechanical Engineers, pp 507–515

  • Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253

    Article  Google Scholar 

  • Guckenberger DJ, de Groot TE, Wan AM, Beebe DJ, Young EW (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15(11):2364–2378

    Article  Google Scholar 

  • Guo L, Feng J, Fang Z, Xu J, Lu X (2015) Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 46(2):252–263

    Article  Google Scholar 

  • Hanada Y, Sugioka K, Kawano H, Ishikawa IS, Miyawaki A, Midorikawa K (2008) Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed Microdevices 10(3):403–410

    Article  Google Scholar 

  • Hashmi A, Xu J (2014) On the quantification of mixing in microfluidics. J Lab Autom 19(5):488–491

    Article  Google Scholar 

  • Hashmi A, Heiman G, Yu G, Lewis M, Kwon H-J, Xu J (2013) Oscillating bubbles in teardrop cavities for microflow control. Microfluid Nanofluid 14(3–4):591–596

    Article  Google Scholar 

  • Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J (2012) Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12(21):4216–4227

    Article  Google Scholar 

  • He Y, Qiu J, Fu J, Zhang J, Ren Y, Liu A (2015) Printing 3D microfluidic chips with a 3D sugar printer. Microfluid Nanofluid 19(2):447–456

    Article  Google Scholar 

  • Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14(3):R1

    Article  Google Scholar 

  • Ho CMB, Ng SH, Li KHH, Yoon Y-J (2015) 3D printed microfluidics for biological applications. Lab Chip 15(18):3627–3637

    Article  Google Scholar 

  • Hong JW, Quake SR (2003) Integrated nanoliter systems. Nat Biotechnol 21(10):1179–1183

    Article  Google Scholar 

  • Hopkinson N, Hague R, Dickens P (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, New York

    Google Scholar 

  • Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203

    Article  Google Scholar 

  • Hutchinson R, Fleck N (2006) The structural performance of the periodic truss. J Mech Phys Solids 54(4):756–782

    Article  MathSciNet  MATH  Google Scholar 

  • Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  Google Scholar 

  • Hwang S, Reyes EI, K-s Moon, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777

    Article  Google Scholar 

  • Ikuta K, Ogata T, Tsubio M, Kojima S (1996) Development of mass productive micro stereo lithography (Mass-IH Process). In: IEEE proceedings of the ninth annual international workshop on micro electro mechanical systems, 1996 (MEMS’96). An investigation of micro structures, sensors, actuators, machines and systems. IEEE. IEEE, pp 301–306

  • Jackson B, Wood K, Beaman J (2000) Discrete multi-material selective laser sintering (M 2 SLS): development for an application in complex sand casting core arrays. Proc Solid Freeform Fabr 2000:176–182

    Google Scholar 

  • Justice BA, Badr NA, Felder RA (2009) 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today 14(1):102–107

    Article  Google Scholar 

  • Kai CC, Fai LK, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co., Inc, Singapore

    Google Scholar 

  • Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theor Nanosci 5(9):1923–1938

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation, vol 29. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Kawata S, Sun H-B, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412(6848):697–698

    Article  Google Scholar 

  • Keating S (2014) Beyond 3D printing: the new dimensions of additive fabrication. Designing for emerging technologies: UX for genomics, robotics, and the internet of things, pp 379

  • Khalil S, Nam J, Sun W (2005) Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J 11(1):9–17

    Article  Google Scholar 

  • King PH (2009) Towards rapid 3D direct manufacture of biomechanical microstructures. University of Warwick, Coventry

    Google Scholar 

  • Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L (2012) Configurable 3D-Printed millifluidic and microfluidic ‘lab on a chip’reactionware devices. Lab Chip 12(18):3267–3271

    Article  Google Scholar 

  • Klein GT, Lu Y, Wang MY (2013) 3D printing and neurosurgery—ready for prime time? World Neurosurg 80(3):233–235

    Article  Google Scholar 

  • Kruth J-P (1991) Material incress manufacturing by rapid prototyping techniques. CIRP Ann Manuf Technol 40(2):603–614

    Article  Google Scholar 

  • Kruth J-P, Leu M-C, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann Manuf Technol 47(2):525–540

    Article  Google Scholar 

  • Kumar S, Kruth J-P (2010) Composites by rapid prototyping technology. Mater Des 31(2):850–856

    Article  Google Scholar 

  • Kwon H-J, Xu Y, Solovitz SA, Xue W, Dimitrov AG, Coffin AB, Xu J (2014) Design of a microfluidic device with a non-traditional flow profile for on-chip damage to zebrafish sensory cells. J Micromech Microeng 24(1):017001

    Article  Google Scholar 

  • Ladd C, So JH, Muth J, Dickey MD (2013) 3D printing of free standing liquid metal microstructures. Adv Mater 25(36):5081–5085

    Article  Google Scholar 

  • Lee MP, Cooper GJ, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Development of a 3D printer using scanning projection stereolithography. Sci Rep 5:9875

    Article  Google Scholar 

  • Li X, Liu X (2014) Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluid 16(5):819–827

    Article  Google Scholar 

  • Liew C, Leong K, Chua C, Du Z (2001) Dual material rapid prototyping techniques for the development of biomedical devices. Part 1: space creation. Int J Adv Manuf Technol 18(10):717–723

    Article  Google Scholar 

  • Liew CL, Leong K, Chua C, Du Z (2002) Dual material rapid prototyping techniques for the development of biomedical devices. Part 2: secondary powder deposition. Int J Adv Manuf Technol 19(9):679–687

    Article  Google Scholar 

  • Lin G, Pister KS, Roos KP (2000) Surface micromachined polysilicon heart cell force transducer. Microelectromech Syst J 9(1):9–17

    Article  Google Scholar 

  • Liou A-C, Chen R-H (2006) Injection molding of polymer micro-and sub-micron structures with high-aspect ratios. Int J Adv Manuf Technol 28(11–12):1097–1103

    Article  Google Scholar 

  • Malek CGK (2006) Laser processing for bio-microfluidics applications (part II). Anal Bioanal Chem 385(8):1362–1369

    Article  Google Scholar 

  • MakerBot. http://makerbot.com

  • Maruo S, Kawata S (1998) Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication. Microelectromech Syst J 7(4):411–415

    Article  Google Scholar 

  • Mason A (2006) Multi-axis hybrid rapid prototyping using fusion deposition modeling. ProQuest, An Arbor

    Google Scholar 

  • Michalski MH, Ross JS (2014) The shape of things to come: 3D printing in medicine. JAMA 312(21):2213–2214

    Article  Google Scholar 

  • Milewski J, Lewis G, Thoma D, Keel G, Nemec R, Reinert R (1998) Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J Mater Process Technol 75(1):165–172

    Article  Google Scholar 

  • Mitra SK, Chakraborty S (2011) Microfluidics and nanofluidics handbook: fabrication, implementation, and applications, vol 2. CRC Press, Boca Raton

    Book  Google Scholar 

  • Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B (2015) Medical 3D printing for the radiologist. RadioGraphics 35(7):1965–1988

    Article  Google Scholar 

  • Moon SK, Tan YE, Hwang J, Yoon Y-J (2014) Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. Int J Precis Eng Manuf Green Technol 1(3):223–228

    Article  Google Scholar 

  • Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14

    Article  Google Scholar 

  • Ning X, Pellegrino S (2012) Design of lightweight structural components for direct digital manufacturing. In: 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference 14th AIAA, 2012

  • O’Connor J, Punch J, Jeffers N, Stafford J (2015) A comparison between the hydrodynamic characteristics of 3D-printed polymer and etched silicon microchannels. Microfluid Nanofluid 19(2):385–394

    Article  Google Scholar 

  • Oh KW, Lee K, Ahn B, Furlani EP (2012) Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3):515–545

    Article  Google Scholar 

  • Okandan M, Galambos P, Mani SS, Jakubczak JF (2001) Development of surface micromachining technologies for microfluidics and BioMEMS. In: Micromachining and microfabrication, 2001. International society for optics and photonics, pp 133–139

  • O’Neill P, Azouz AB, Vazquez M, Liu J, Marczak S, Slouka Z, Chang HC, Diamond D, Brabazon D (2014) Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications. Biomicrofluidics 8(5):052112

    Article  Google Scholar 

  • Pan Y, Zhao X, Zhou C, Chen Y (2012a) Smooth surface fabrication in mask projection based stereolithography. J Manuf Process 14(4):460–470

    Article  Google Scholar 

  • Pan Y, Zhou C, Chen Y (2012b) A fast mask projection Stereolithography process for fabricating digital models in minutes. J Manuf Sci Eng 134(5):051011

    Article  Google Scholar 

  • Pan Y, Zhou C, Chen Y, Partanen J (2014) Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces. J Manuf Sci Eng 136(3):031007

    Article  Google Scholar 

  • Pan Y, Patil A, Zhou C (2015) A novel projection based electro-stereolithography (PES) process for composite printing. In: Annual solid freeform fabrication symposium, Austin

  • Papakonstantinou P, Vainos N, Fotakis C (1999) Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films. Appl Surf Sci 151(3):159–170

    Article  Google Scholar 

  • Park SH, Lim TW, Yang D-Y, Cho NC, Lee K-S (2006) Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique. Appl Phys Lett 89(17):173133

    Article  Google Scholar 

  • Park SH, Yang DY, Lee KS (2009) Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photonics Rev 3(1–2):1–11

    Article  Google Scholar 

  • Park IB, Ha YM, Lee SH (2011) Dithering method for improving the surface quality of a microstructure in projection microstereolithography. Int J Adv Manuf Technol 52(5–8):545–553

    Article  Google Scholar 

  • Pascall AJ, Qian F, Wang G, Worsley MA, Li Y, Kuntz JD (2014) Light-directed electrophoretic deposition: a new additive manufacturing technique for arbitrarily patterned 3D composites. Adv Mater 26(14):2252–2256

    Article  Google Scholar 

  • Pham D, Gault R (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10):1257–1287

    Article  Google Scholar 

  • Pryor S (2014) Implementing a 3D printing service in an academic library. J Libr Adm 54(1):1–10

    Google Scholar 

  • Ren K, Zhou J, Wu H (2013) Materials for microfluidic chip fabrication. Acc Chem Res 46(11):2396–2406

    Article  Google Scholar 

  • Rivera CM, Kwon H-J, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG (2015) Towards a dynamic clamp for neurochemical modalities. Sensors 15(5):10465–10480

    Article  Google Scholar 

  • Rivera CM, Kwon H-J, Hashmi A, Yu G, Zhao J, Gao J, Xu J, Xue W, Dimitrov AG (2015) Towards a dynamic clamp for neurochemical modalities. Sensors 15(5):10465–10480 Rogers CI, Pagaduan JV, Nordin GP, Woolley AT (2011) Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. Anal Chem 83(16):6418–6425

    Article  Google Scholar 

  • Rogers CI, Oxborrow JB, Anderson RR, Tsai L-F, Nordin GP, Woolley AT (2014) Microfluidic valves made from polymerized polyethylene glycol diacrylate. Sens Actuators B Chem 191:438–444

    Article  Google Scholar 

  • Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9(1):016501

    Article  Google Scholar 

  • Rötting O, Röpke W, Becker H, Gärtner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36

    Article  Google Scholar 

  • Ruan J, Tang L, Liou FW, Landers RG (2010) Direct three-dimensional layer metal deposition. J Manuf Sci Eng 132(6):064502

    Article  Google Scholar 

  • Ruprecht R, Benzler T, Hanemann T, Müller K, Konys J, Piotter V, Schanz G, Schmidt L, Thies A, Wöllmer H (1997) Various replication techniques for manufacturing three-dimensional metal microstructures. Microsyst Technol 4(1):28–31

    Article  Google Scholar 

  • Saggiomo V, Velders AH (2015) Simple 3D printed scaffold‐removal method for the fabrication of intricate microfluidic devices. Adv Sci 2(9):1500125

    Google Scholar 

  • Santosa J, Jing D, Das S (2002) Experimental and numerical study on the flow of fine powders from small-scale hoppers applied to SLS multi-material deposition–part I. Ann Arbor 1001:48109-2125

    Google Scholar 

  • Saotome Y, Iwazaki H (2001) Superplastic backward microextrusion of microparts for micro-electro-mechanical systems. J Mater Process Technol 119(1):307–311

    Article  Google Scholar 

  • Saxena I, Ehmann K, Cao J (2014) Laser-induced plasma in aqueous media: numerical  simulation and experimental validation of spatial and temporal profiles. Appl Optics 53(35):8283–8294

    Article  Google Scholar 

  • Saxena I, Malhotra R, Ehmann K, Cao J (2015a) High-speed fabrication of microchannels using line-based laser induced plasma micromachining. J Micro Nano-Manufact 3(2):021006

    Google Scholar 

  • Saxena I, Sarah W, Cao J (2015b) Unidirectional magnetic field assisted laser induced plasma micro-machining. Manuf Lett 3:1–4

    Article  Google Scholar 

  • Schuettler M, Stiess S, King B, Suaning G (2005) Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J Neural Eng 2(1):S121

    Article  Google Scholar 

  • Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem 86(6):3124–3130

    Article  Google Scholar 

  • Sochol R, Sweet E, Glick C, Venkatesh S, Avetisyan A, Ekman K, Raulinaitis A, Tsai A, Wienkers A, Korner K (2016) 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip. doi:10.1039/C5LC01389E

    Google Scholar 

  • Song X, Pan Y, Chen Y (2015) Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J Manuf Sci Eng 137(2):021005

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977

    Article  Google Scholar 

  • Sreenivasan R, Goel A, Bourell D (2010) Sustainability issues in laser-based additive manufacturing. Phys Procedia 5:81–90

    Article  Google Scholar 

  • Stanton M, Samitier J, Sánchez S (2015) Bioprinting of 3D hydrogels. Lab Chip 15(15):3111–3115

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  MATH  Google Scholar 

  • Stratasys. http://www.stratasys.com

  • Sun C, Fang N, Wu D, Zhang X (2005) Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuators, A 121(1):113–120

    Article  Google Scholar 

  • Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-Ion microbattery architectures. Adv Mater 25(33):4539–4543

    Article  Google Scholar 

  • Tan YE, Moon SK (2014) Inflatable wing design for micro UAVs using indirect 3D printing. In: 2014 11th international conference on ubiquitous robots and ambient intelligence (URAI). IEEE, pp 545–546

  • Temple JP, Hutton DL, Hung BP, Huri PY, Cook CA, Kondragunta R, Jia X, Grayson WL (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res, Part A 102(12):4317–4325

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  Google Scholar 

  • Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  Google Scholar 

  • Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352

    Article  Google Scholar 

  • Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67(5–8):1721–1754

    Article  Google Scholar 

  • Ventola CL (2014) Medical applications for 3D Printing: current and projected uses. Pharm Ther 39(10):704

    Google Scholar 

  • Wang J, Niino H, Yabe A (1999) One-step microfabrication of fused silica by laser ablation of an organic solution. Appl Phys A Mater Sci Process 68(1):111–113

    Article  Google Scholar 

  • Wang J, Ren L, Li L, Liu W, Zhou J, Yu W, Tong D, Chen S (2009) Microfluidics: a new cosset for neurobiology. Lab Chip 9(5):644–652

    Article  Google Scholar 

  • Weibel DB, Whitesides GM (2006) Applications of microfluidics in chemical biology. Curr Opin Chem Biol 10(6):584–591

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373

    Article  Google Scholar 

  • Williams CB, Cochran JK, Rosen DW (2011) Additive manufacturing of metallic cellular materials via three-dimensional printing. Int J Adv Manuf Technol 53(1–4):231–239

    Article  Google Scholar 

  • Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:208760

    Article  Google Scholar 

  • Wurm G, Tomancok B, Holl K, Trenkler J (2004) Prospective study on cranioplasty with individual carbon fiber reinforced polymere (CFRP) implants produced by means of stereolithography. Surg Neurol 62(6):510–521

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28(1):153–184

    Article  Google Scholar 

  • Xiong W, Zhou YS, He XN, Gao Y, Mahjouri-Samani M, Jiang L, Baldacchini T, Lu YF (2012) Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci Appl 1(4):e6

    Article  Google Scholar 

  • Xu J (2014) Microfluidics “lab-on-a-chip” system for food chemical hazard detection. Food chemical hazard detection: development and application of new technologies, pp 263–289

  • Xu J (2015) Liquid metal robotics: a new category of soft robotics on the horizon. Sci Bull 60(11):1047–1048

    Article  Google Scholar 

  • Xu G, Zhao W, Tang Y, Lu B (2006) Novel stereolithography system for small size objects. Rapid Prototyping Journal 12(1):12–17

    Article  Google Scholar 

  • Yazdi AA, Sadeghi A, Saidi MH (2014) Rheology effects on cross-stream diffusion in a Y-shaped micromixer. Colloids Surf A 456:296–306

    Article  Google Scholar 

  • Yazdi AA, Sadeghi A, Saidi MH (2015a) A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology. Microfluid Nanofluid 19(6):1297–1308

    Article  Google Scholar 

  • Yazdi AA, Sadeghi A, Saidi MH (2015b) Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion. J Colloid Interface Sci 442:8–14

    Article  Google Scholar 

  • Zhang X, Jiang X, Sun C (1999) Micro-stereolithography of polymeric and ceramic microstructures. Sens Actuators, A 77(2):149–156

    Article  Google Scholar 

  • Zhang H, Betz A, Qadeer A, Attinger D, Chen W (2011) Microfluidic formation of monodispersed spherical microgels composed of triple-network crosslinking. J Appl Polym Sci 121(5):3093–3100

    Article  Google Scholar 

  • Zhang Z, Xu J, Hong B, Chen X (2014) The effects of 3D channel geometry on CTC passing pressure–towards deformability-based cancer cell separation. Lab Chip 14(14):2576–2584

    Article  Google Scholar 

  • Zhang Z, Chen X, Xu J (2015) Entry effects of droplet in a micro confinement: implications for deformation-based circulating tumor cell microfiltration. Biomicrofluidics 9(2):024108

    Article  MathSciNet  Google Scholar 

  • Zhao X-M, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7(7):1069–1074

    Article  Google Scholar 

  • Zhao X, Pan Y, Zhou C, Chen Y, Wang CC (2013) An integrated CNC accumulation system for automatic building-around-inserts. J Manuf Process 15(4):432–443

    Article  Google Scholar 

  • Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344(6190):1373–1377

    Article  Google Scholar 

  • Zhou C, Chen Y, Yang Z, Khoshnevis B (2011) Development of multi-material mask-image-projection-based stereolithography for the fabrication of digital materials. In: Annual solid freeform fabrication symposium, Austin, TX, 2011

  • Zhou C, Chen Y, Yang Z, Khoshnevis B (2013) Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp J 19(3):153–165

    Article  Google Scholar 

  • Zhou C, Ye H, Zhang F (2015) A novel low-cost stereolithography process based on vector scanning and mask projection for high-accuracy, high-speed, high-throughput, and large-area fabrication. J Comput Inf Sci Eng 15(1):011003

    Article  Google Scholar 

  • Ziaie B, Baldi A, Lei M, Gu Y, Siegel RA (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56(2):145–172

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by a University of Illinois at Chicago Curriculum and Instruction Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yayue Pan or Jie Xu.

Appendix

Appendix

Glossary of terms in manufacturing technologies

3DP

3 dimensional printing

A printing method in which a binder is printed onto a powder bed to fabricate a part

CLIP

Continuous liquid interface production

A variation of SL in which the 3D printing of parts is continuous and faster

EBM

Electron beam melting

A 3D printing method similar to LENS, which uses electron laser beam to melt the powder beds

EFAB

Electrochemical fabrication

A layer-by-layer hybrid process comprising of electrochemical deposition and subtractive planarization to fabricate microstructures

FDM

Fused deposition modeling

A 3D printing method based on extruding polymer that is fed as solid filament to the device

FLA

Femtosecond laser ablation

A fabrication technique based on material removal from a target of interest using femtosecond laser beam

LENS

Laser engineered net shaping

A 3D printing method which employs powder delivery through a nozzle and subsequent laser melting the layers of the finished part

LOM

Laminated object manufacturing

A 3D printing method based on laser cutting the layers of the finished part

MIP-SL

Mask image projection SL

A variation of SL in which a Digital Micromirror Device (DMD) is used to project the 2D mask images on the resin surface

Polyjet

A 3D printing method based on jetting photopolymers to finally being cured by UV light

Prometal

A 3D printing method that uses an inkjet printing head to deposit binder onto a metal powder bed to form each layer of the finished part

SL

Stereolithography

A 3D printing method based on curing layers of liquid photopolymer by exposing them to light (UV)

SLM

Selective laser melting

A 3D printing method based on selectively laser melting parts of a powder bed to fabricate layers of the finished component

SLS

Selective laser sintering

A 3D printing method based on selectively laser sintering parts of a powder bed to fabricate layers of the finished component

TPP

Two-photon polymerization

A variation of SL in which the liquid photopolymer is cured using femtosecond laser energy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, A.A., Popma, A., Wong, W. et al. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid 20, 50 (2016). https://doi.org/10.1007/s10404-016-1715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1715-4

Keywords

Navigation