Skip to main content
Log in

Endophytic Fungi as Potential Bio-Control Agents of Soil-Borne Pathogen

  • Review
  • Published:
Journal of Crop Health Aims and scope Submit manuscript

Abstract

As possible biocontrol agents against soil-borne infections, root endophytic fungi, also known as fungal endophytes, have gained attention. Recently, it has been discovered that fungal endophytes and endophytic fungi found in plant roots are promising biocontrol agents for soil-borne diseases. These fungi can shield plants from the harm that root knots and rot pathogens can cause. They display characteristics crucial for long-term disease control in agriculture, such as the generation of systemic resistance, the production of antifungal metabolites, and the stimulation of plant development. This review examines the different types, underlying mechanisms, and relationships with plant pathogens. Using fungal endophytes as biocontrol agents in agricultural production systems requires standardized selection, application, and evaluation approaches. Fungal endophytes have shown promise as biocontrol agents for preventing the spread of soil-borne diseases, reducing the need for chemical pesticides, and increasing crop yields. Using root endophytic fungi and other fungal endophytes could improve pathogen management and the viability of food production. Supporting ecologically friendly methods and accelerating sustainable agriculture can be accomplished with the use of these helpful fungi. However, further study is required to explore root entophytic fungi and fungal endophytes that can dramatically improve disease management practices and provide more eco-friendly and sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

No new data have been generated during the preparation of this article. All sources have been listed in the text.

References

  • Aamir M, Rai KK, Zehra A, Kumar S, Yadav M, Shukla V, Upadhyay RS (2020) Fungal endophytes: classification, diversity, ecological role, and their relevance in sustainable agriculture. In: Microbial endophytes. Elsevier,

    Google Scholar 

  • Abd El-Rahman SS, Mazen MM, Mohamed HI, Mahmoud NM (2012) Induction of defense related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Europ J Plant Pathol 134:105–116. https://doi.org/10.1007/s10658-012-0028-z

    Article  CAS  Google Scholar 

  • Abd El-Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354. https://doi.org/10.1007/s11738-013-1416-5

    Article  CAS  Google Scholar 

  • Abdelaziz AM, Kalaba MH, Hashem AH et al (2022) Biostimulation of tomato growth and biocontrol of Fusarium wilt disease using certain endophytic fungi. Bot Stud 63:34. https://doi.org/10.1186/s40529-022-00364-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdou R, Alqahtani AM, Attia GH (2021) Bioactive metabolites of Aspergillus neoniger, an endophyte of the medicinal plant Ficus carica. Indian J Pharm Sci 83:101–109. https://doi.org/10.36468/pharmaceutical-sciences.755

    Article  CAS  Google Scholar 

  • Abdulhadi SY, Hasan GQ, Gergees RN (2020) Molecular detection and antimicrobial activity of endophytic fungi isolated from a medical plant Rosmarinus officinalis. Ann Trop Med Public Health 23:231–384. https://doi.org/10.36295/ASRO.2020.231384

    Article  Google Scholar 

  • Abo Nouh FA (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4:31–44. https://doi.org/10.21608/MB.2019.38886

    Article  Google Scholar 

  • Addy H, Piercey M, Currah R (2005) Microfungal endophytes in roots. Can J Bot 83:1–13. https://doi.org/10.1139/b04-171

    Article  Google Scholar 

  • Adegbeye MJ, Salem AZM, Reddy PRK, Elghandour MMM, Oyebamiji KJ (2020) Waste recycling for the eco-friendly input use efficiency in agriculture and livestock feeding. In: Kumar S, Meena RS, Jhariya M (eds) Resources use efficiency in agriculture. Springer, Singapore https://doi.org/10.1007/978-981-15-6953-1_1

    Chapter  Google Scholar 

  • Adeleke BS, Babalola OO (2021) Biotechnological overview of agriculturally important endophytic fungi. Hortic Environ Biotechnol 62:507–520. https://doi.org/10.1007/s13580-021-00334-1

    Article  Google Scholar 

  • Adeleke BS, Babalola OO (2022) Meta-omics of endophytic microbes in agricultural biotechnology. Biocatal Agric Biotechnol 42:102332. https://doi.org/10.1016/j.bcab.2022.102332

    Article  CAS  Google Scholar 

  • Afshan NUS (2023) Recent advancement in fungal biocontrol agents. In: Rashad YM, Baka ZAM, Moussa TAA (eds) Plant mycobiome. Springer, Cham https://doi.org/10.1007/978-3-031-28307-9_8

    Chapter  Google Scholar 

  • Ahmad G, Amir KH, Ansari S, Elhakem A, Rokayya S, Mohamed HI (2022) Management of root-knot nematode infection by using fly ash and Trichoderma harzianum in Capsicum annum plants by modulating growth, yield, photosynthetic pigments, biochemical substances, and secondary metabolite profiles. Not Bot Horti Agrobo 50(1):12591. https://doi.org/10.15835/nbha50112591

    Article  CAS  Google Scholar 

  • Akhtar N, Wani AK, Dhanjal DS et al (2022) Insights into the beneficial roles of dark septate endophytes in plants under challenging environment: resilience to biotic and abiotic stresses. World J Microbiol Biotechnol 38:79. https://doi.org/10.1007/s11274-022-03264-x

    Article  PubMed  Google Scholar 

  • Ali S, Khan SA, Hamayun M, Iqbal A, Khan AL, Hussain A, Shah M (2019) Endophytic fungi from Caralluma acutangula can secrete plant growth promoting enzymes. Fresenius Environ Bull 28:2688–2696

    CAS  Google Scholar 

  • Ali S, Tyagi A, Bae H (2023) Plant microbiome: An ocean of possibilities for improving disease resistance in plants. Microorganisms 11:392. https://doi.org/10.3390/microorganisms11020392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly AA, Mansour MTM, Mohamed HI, Abd-Elsalam K (2012) Examination of correlations between several biochemical components and powdery mildew resistance of flax cultivars. Plant Pathol J 28(2):149–155. https://doi.org/10.5423/PPJ.2012.28.2.149

    Article  CAS  Google Scholar 

  • Aly AA, Mohamed HI, Mansour MTM, Omar MR (2013) Suppression of powdery mildew on flax by foliar application of essential oils. J Phytopathol 161:376–381

    Article  Google Scholar 

  • de Araujo ASF, Miranda ARL, Sousa RS, Mendes LW, Antunes JEL, de Souza Oliveira LM, de Araujo FF, Melo VMM, Figueiredo MDB (2019) Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl Soil Ecol 143:26–34

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  PubMed  Google Scholar 

  • Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383

    Article  PubMed  Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    Article  CAS  PubMed  Google Scholar 

  • Aslam MM, Waseem M, Felix A, Okal EJ, Nyimbo WJ, Ul QMT (2022) Harnessing beneficial root microbiome alleviates abiotic stress tolerance in crops. In: Microbes Agri-Forest. Biotech. CRC Press,

    Google Scholar 

  • Attia MS, Salem MS, Abdelaziz AM (2022) Endophytic fungi Aspergillus spp. reduce fusarial wilt disease severity, enhance growth, metabolism and stimulate the plant defense system in pepper plants. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03607-6

    Article  Google Scholar 

  • Bamisile BS, Siddiqui JA, Akutse KRamos Aguila LC, Xu Y (2021) General limitations to endophytic entomopathogenic fungi use as plant growth promoters, pests and pathogens biocontrol agents. Plants 10:2119. https://doi.org/10.3390/plants10102119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron NC, de Souza Pollo A, Rigobelo EC (2020) Purpureocillium lilacinum and Metarhizium marquandii as plant growth-promoting fungi. PeerJ 8:e9005. https://doi.org/10.7717/peerj.9005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bary A (1866) Morphologie Und Physiologie Der Pilze Flechten Und Myxomyceten. W. Engelmann, Leipzig

    Book  Google Scholar 

  • Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EH, Saxena RK, Li Q (2023) Do all fungi have ancestors with endophytic lifestyles? Fungal Divers. https://doi.org/10.1007/s13225-023-00516-5

    Article  PubMed Central  Google Scholar 

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee IJ, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127. https://doi.org/10.1007/s13199-018-0545-4

    Article  CAS  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from wood plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, St. Paul, pp 31–65

    Google Scholar 

  • Bogner CW, Kariuki GM, Elashry A, Sichtermann G, Buch AK, Mishra B, Thines M, Grundler FMW, Schouten A (2016) Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol Progress 15:30. https://doi.org/10.1007/s11557-016-1169-9

    Article  Google Scholar 

  • Bogner CW, Kamdem RST, Sichtermann G, Matthäus C, Hölscher D, Popp J, Proksch P, Grundler FMW, Schouten A (2017) Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb Biotechnol 10:175–188. https://doi.org/10.1111/1751-7915.12467

    Article  CAS  PubMed  Google Scholar 

  • Bokhari FM (2009) Efficacy of some Trichoderma species in the control of Rotylenchulus reniformis and Meloidogyne javanica. Arch Phytopathol Plant Prot 42:361–369

    Article  CAS  Google Scholar 

  • Busby PE, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655. https://doi.org/10.1007/s11103-015-0412-0

    Article  CAS  PubMed  Google Scholar 

  • Carroll GC (1986) The biology of endophytism in plants with particular reference to woody plants. In: Fokkema NJ, van den Heuvel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 205–222

    Google Scholar 

  • Cheng C, Li D, Qi Q, Sun X, Anue MR, David BM, Zhang Y, Hao X, Zhang Z, Lai Z (2020) The root endophytic fungus Serendipita indica improves resistance of banana to Fusarium oxysporum f. sp. cubense tropical race 4. Eur J Plant Pathol 156:87–100. https://doi.org/10.1007/s10658-019-01863-3

    Article  CAS  Google Scholar 

  • Chitnis VR, Suryanarayanan TS, Nataraja KN, Prasad SR, Oelmüller R, Shaanker RU (2020) Fungal endophyte-mediated crop improvement: the way ahead. Front Plant Sci 11:561007. https://doi.org/10.3389/fpls.2020.561007

    Article  PubMed  PubMed Central  Google Scholar 

  • Chutulo EC, Chalannavar RK (2018) Endophytic mycoflora and their bioactive compounds from Azadirachta Indica: A comprehensive review. J Fungi 4:42. https://doi.org/10.3390/jof4020042

    Article  CAS  Google Scholar 

  • Collinge DB, Jørgensen HJ, Latz MA, Manzotti A, Ntana F, Rojas EC, Jensen B (2019) Searching for novel fungal biological control agents for plant disease control among endophytes. Endophytes Grow World 31:25

    Article  Google Scholar 

  • Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW (2019) Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci 10:979. https://doi.org/10.3389/fpls.2019.00979

    Article  PubMed  PubMed Central  Google Scholar 

  • Daghino S, Martino E, Voyron S, Perotto S (2022) Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep 12:11013

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshkhah R, Cabello S, Rozanska E, Sobczak M, Grundler FMW, Wieczorek K, Hofmann J (2013) Piriformospora indica antagonizes cyst nematode infection and development in Arabidopsis roots. J Exp Bot 64:3763–3774. https://doi.org/10.1093/jxb/ert213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Lamo FJ, Takken FLW (2020) BioControl by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11:37. https://doi.org/10.3389/fpls.2020.00037

    Article  PubMed  PubMed Central  Google Scholar 

  • De Silva N, Lumyong S, Hyde K, Bulgakov T, Phillips A, Yan J (2016) Mycosphere essays 9: defining biotrophs and hemibiotrophs. Mycosphere 7(5):545–559

    Article  Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148

    Article  Google Scholar 

  • Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens-are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–135

    Article  Google Scholar 

  • Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Chang 10:550–554

    Article  ADS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47

    Article  Google Scholar 

  • Dissanayake AJ, Purahong W, Wubet T, Hyde KD, Zhang W, Xu H, Zhang G, Fu C, Liu M, Xing Q (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers 90:85–107

    Article  Google Scholar 

  • Dutta P, Kumari A, Mahanta M, Upamanya GK, Heisnam P, Borua S, Kaman PK, Mishra A, Mallik M, Muthukrishnan G (2023b) Nanotechnological approaches for management of soil-borne plant pathogens. Front Plant Sci 14:1136233

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Mondal S, Hazra A, Ghosh S, Panja B, Chakrabarti M, Mukherjee A (2023a) Evaluation of root-gall associated fungal endophytes for the control of Meloidogyne graminicola infecting rice. Biol Control 186:105341. https://doi.org/10.1016/j.biocontrol.2023.105341

    Article  Google Scholar 

  • Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elklish A, Hassan SED (2021) Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: An overview. Plants 10:935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Mansy SM, Nouh FAA, Mousa MK, Abdel-Azeem AM (2020) Endophytic fungi: diversity, abundance, and plant growth-promoting attributes. In: Perspective for diversity and crop productivity. Agriculturally important fungi for sustainable agriculture, vol 1, pp 21–59

    Google Scholar 

  • El Sabagh A, Islam MS, Hossain A, Iqbal MA, Mubeen M, Waleed M, Reginato M, Battaglia M, Ahmed S, Rehman A (2022) Phytohormones as growth regulators during abiotic stress tolerance in plants. Front Agron 4:765068

    Article  Google Scholar 

  • El-Sharkawy HH, Rashad YM, Elazab NT (2023) Biocontrol potential of the endophytic Epicoccum nigrum HE20 against stripe rust of wheat. Pestic Biochem Physiol 194:105517. https://doi.org/10.1016/j.pestbp.2023.105517

    Article  CAS  PubMed  Google Scholar 

  • Elsherbiny EA, Taher MA, Elsebai MF (2019) Activity of Purpureocillium lilacinum filtrates on biochemical characteristics of Sclerotinia sclerotiorum and induction of defense responses in common bean. Eur J Plant Pathol 155:39–52. https://doi.org/10.1007/s10658-019-01748-5

    Article  CAS  Google Scholar 

  • Eshel A, Beeckman T (2013) Plant roots: the hidden half. CRC Press

    Book  Google Scholar 

  • Fei W, Liu Y (2023) Biotrophic fungal pathogens: a critical overview. Appl Biochem Biotechnol 195:1–16

    Article  CAS  PubMed  Google Scholar 

  • Fisher P, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120:137–143

    Article  Google Scholar 

  • Fontana DC, Torres AG, Pascholati SF, Schmidt D, Neto DD (2021) Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses. Pathogens 10(5):570. https://doi.org/10.3390/pathogens10050570

    Article  PubMed  PubMed Central  Google Scholar 

  • Fors RO, Saggin Júnior OJ, Carneiro MAC, Berbara RLL (2020) Selection of arbuscular mycorrhizal fungi for sugarcane in four soils with the presence of dark septate endophytes. Acta Sci Agron. https://doi.org/10.4025/actasciagron.v42i1.42477

    Article  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gakuubi MM, Munusamy M, Liang ZX, Ng SB (2021) Fungal endophytes: A promising frontier for discovery of novel bioactive compounds. J Fungi 7:786

    Article  Google Scholar 

  • García-Latorre C, Rodrigo S, Santamaria O (2021) Effect of fungal endophytes on plant growth and nutrient uptake in Trifolium subterraneum and Poa pratensis as affected by plant host specificity. Mycol Progress 20:1217–1231. https://doi.org/10.1007/s11557-021-01732-6

    Article  Google Scholar 

  • García-Latorre C, Rodrigo S, Marin-Felix Y et al (2023) Plant-growth promoting activity of three fungal endophytes isolated from plants living in dehesas and their effect on Lolium multiflorum. Sci Rep 13:7354. https://doi.org/10.1038/s41598-023-34036-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano M, Petropoulos SA, Roupael Y (2021) Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463

    Article  CAS  Google Scholar 

  • Girlanda M, Perotto S, Moenne-Loccoz Y, Bergero R, Lazzari A, Defago G, Bonfante P, Luppi A (2001) Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl Environ Microbiol 67:1851–1864

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • González V, Armijos E, Garcés-Claver A (2020) Fungal endophytes as biocontrol agents against the main soil-borne diseases of melon and watermelon in Spain. Agronomy 10:820. https://doi.org/10.3390/agronomy10060820

    Article  CAS  Google Scholar 

  • Grabka R, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S (2022) Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 11(3):384. https://doi.org/10.3390/plants11030384

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Uphoff N (2019) Symbiotic root-endophytic soil microbes improve crop productivity and provide environmental benefits. Scientifica. https://doi.org/10.1155/2019/9106395

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hasan M, Hossain M, Jiang D (2023) New endophytic strains of Trichoderma promote growth and reduce clubroot severity of rapeseed (Brassica napus). PLoS ONE 18(10):e287899. https://doi.org/10.1371/journal.pone.0287899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassine M, Aydi-Ben-Abdallah R, Jabnoun-Khireddine H et al (2022) Soil-borne and compost-borne Penicillium sp. and Gliocladium spp. as potential microbial biocontrol agents for the suppression of anthracnose-induced decay on tomato fruits. Egypt J Biol Pest Cont 32:20. https://doi.org/10.1186/s41938-022-00519-5

    Article  Google Scholar 

  • Hawar SN, Taha ZK, Hamied AS, Al-Shmgani HS, Sulaiman GM, Elsilk SE (2023) Antifungal activity of bioactive compounds produced by the endophytic fungus Paecilomyces sp.(JN227071. 1) against Rhizoctonia solani. Int J Biomat. https://doi.org/10.1155/2023/2411555

    Article  Google Scholar 

  • Heberling JM, Burke DJ (2019) Utilizing herbarium specimens to quantify historical mycorrhizal communities. Appl Plant Sci 7:e1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Niu Y, Su L, Deng H, Lyu H (2019) The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. Microbiol Res 231:126369. https://doi.org/10.1016/j.micres.2019.126369

    Article  CAS  PubMed  Google Scholar 

  • Ikechi-Nwogu C, Okene F (2019) Molecular characterization of fungi associated with stored soybean (Glycine max L.) seeds. Niger J Biotechnol 36:27–32

    Article  Google Scholar 

  • Indrawati I, Rossiana N, Fathurrohim MF (2021) Diversity of endophytic bacteria and microfungi in Syzygium cumini fruit from West Java, Indonesia. Biodivers J Biol Divers 22(9):3943–3948. https://doi.org/10.13057/biodiv/d220941

    Article  Google Scholar 

  • Islam W, Adnan M, Shabbir A, Naveed H, Abubakar YS, Qasim M, Tayyab M, Noman A, Nisar MS, Khan KA (2021) Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb Pathog 159:105122

    Article  CAS  PubMed  Google Scholar 

  • Ismaiel AA, Papenbrock J (2015) Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5(3):492–537. https://doi.org/10.3390/agriculture5030492

    Article  Google Scholar 

  • Jacquet F, Jeuffroy MH, Jouan J, Le Cadre E, Litrico I, Malausa T, Reboud X, Huyghe C (2022) Pesticide-free agriculture as a new paradigm for research. Agron Sustain Dev 42:8

    Article  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    Article  CAS  PubMed  Google Scholar 

  • Jat SL, Suby S, Parihar CM, Gambhir G, Kumar N, Rakshit S (2021) Microbiome for sustainable agriculture: A review with special reference to the corn production system. Arch Microbiol 203:2771–2793

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Mohamed HI (2022) Plant secondary metabolites as a tool to investigate biotic stress tolerance in plants: a review. Gesunde Pflanz 74:771–790. https://doi.org/10.1007/s10343-022-00669-4

    Article  Google Scholar 

  • Johnson LJ, de Bonth ACM, Briggs LR et al (2013) The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 60:171–188. https://doi.org/10.1007/s13225-013-0239-4

    Article  Google Scholar 

  • Jones E, Bienkowski D, Stewart A (2016) The importance of water potential range tolerance as a limiting factor on Trichoderma spp. biocontrol of Sclerotinia sclerotiorum. Ann Appl Biol 168:41–51

    Article  CAS  Google Scholar 

  • Kashyap N, Singh SK, Yadav N, Singh VK, Kumari M, Kumar D, Shukla L, Kaushalendra, Bhardwaj N, Kumar A (2023) Biocontrol screening of endophytes: Applications and limitations. Plants 12:2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473

    Article  ADS  PubMed  Google Scholar 

  • Kerry B, Hidalgo-Diaz L (2004) Application of Pochonia chlamydosporia in the integrated control of root-knot nematodes on organically grown vegetable crops in Cuba. IOBC Wprs Bull 27:123–126

    Google Scholar 

  • Khruengsai S, Pripdeevech P, Tanapichatsakul C, Srisuwannapa C, D’Souza PE, Panuwet P (2021) Antifungal properties of volatile organic compounds produced by Daldinia eschscholtzii MFLUCC 19-0493 isolated from Barleria prionitis leaves against Colletotrichum acutatum and its post-harvest infections on strawberry fruits. PeerJ 9:e11242. https://doi.org/10.7717/peerj.11242

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjøller R, Olsrud M, Michelsen A (2010) Coexisting ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3:205–214

    Article  Google Scholar 

  • Kovalchuk A, Mukrimin M, Zeng Z, Raffaello T, Liu M, Kasanen R, Sun H, Asiegbu FO (2018) Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens Heterobasidion spp. Environ Microbiol Rep 10:532–541

    Article  PubMed  Google Scholar 

  • Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022) Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10:1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Kumari R, Kumar S, Kumar A (2023) PGPMs-mediated improvement of crops under abiotic stress. In: Plant-microbe interaction-recent advances mol biochem approaches. Elsevier,

    Google Scholar 

  • Kumar V, Singh A, Jain R (2012) Comparative efficacy of bioagents as seed treatment for management of Meloidogyne incognita infecting okra. Nematol Mediterr 40:17–23

    Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA (2022) Biological control of plant pathogens: A global perspective. Microorganisms 10:596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latz MA, Jensen B, Collinge DB, Jørgensen HJ (2018) Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol Divers 11:555–567. https://doi.org/10.1080/17550874.2018.1534146

    Article  Google Scholar 

  • Lu H, Wei T, Lou H, Shu X, Chen Q (2021) A critical review on communication mechanism within plant-endophytic fungi interactions to cope with biotic and abiotic stresses. J Fungi 7:719

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEMS Microbiol Ecol 92(12):1–17. https://doi.org/10.1093/femsec/fiw194

    Article  CAS  Google Scholar 

  • Maheshwari R, Bhutani N, Bhardwaj A, Suneja P (2019) Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential. Biocat Agric Biotechnol 20:101229. https://doi.org/10.1016/j.bcab.2019.101229

    Article  Google Scholar 

  • Malarvizhi K, Murali T, Kumaresan V (2023) Fungal endophytes of crop plants: Diversity, stress tolerance and biocontrol potential. Egypt J Biol Pest Control 33:1–7

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2008) Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment. Mycorrhiza 18:145–155

    Article  PubMed  Google Scholar 

  • Márquez-Dávila K, Arévalo-López L, Gonzáles R, Vega L, Meza M (2020) Trichoderma and Clonostachys as biocontrol agents against Meloidogyne incognita in sacha inchi. Pesqui Agropecu Trop. https://doi.org/10.1590/1983-40632020v5060890

    Article  Google Scholar 

  • Martín JA, Macaya-Sanz D, Witzell J, Blumenstein K, Gil L (2015) Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. Eur J Plant Pathol 142:185–196

    Article  Google Scholar 

  • Masurkar P, Bajpai R, Sahu V, Kumar M, Rajput RS (2018) Invasion and nutrient acquisition strategies of phytopathogens: fungi, bacteria and viruses. Int J Curr Microbiol Appl Sci 7:3132–3146

    Article  CAS  Google Scholar 

  • Mehmoood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77:225–235

    Article  Google Scholar 

  • Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes (Gossypium hirsutum L.). Rom Biotechnol Lett 18(6):7223–7231

    Google Scholar 

  • Mohamed HI, Aly AA, Mansour MTM, El-Samawaty AMA (2012) Association of oxidative stress components with resistance to flax powdery mildew. Tropical Plant Pathol 37(6):386–392. https://doi.org/10.1590/S1982-56762012000600002

    Article  Google Scholar 

  • Montesinos-Navarro A, Valiente-Banuet A, Verdú M (2019) Mycorrhizal symbiosis increases the benefits of plant facilitative interactions. Ecography 42:447–455

    Article  ADS  Google Scholar 

  • Morales-Sánchez V, Díaz CE, Trujillo E, Olmeda SA, Valcarcel F, Muñoz R, Andrés MF, González-Coloma A (2021) Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. J Fungi 7:109. https://doi.org/10.3390/jof7020109

    Article  CAS  Google Scholar 

  • Muhammad M, Ahmad MW, Basit A, Ullah S, Mohamed HI, Nisar N, Khan A (2024a) Plant growth-promoting rhizobacteria and their applications and role in the management of soilborne diseases. In: Bacterial secondary metabolites. Elsevier, pp 59–82

    Chapter  Google Scholar 

  • Muhammad M, Basit A, Wahab A, Li WJ, Shah ST, Mohamed HI (2024b) Response mechanism of plant stresses to secondary metabolites production. In: Fungal secondary metabolites. Elsevier, pp 469–492

    Chapter  Google Scholar 

  • Munikumar S (2023) Plant-endophytic fungi interaction under contrasting habits: Composition, ecological significance and their mechanism of interactions with a special focus on abiotic stress https://doi.org/10.33612/diss.581231942 (Thesis fully internal (DIV), University of Groningen]. University of Groningen)

    Book  Google Scholar 

  • Nishat Y, Danish M, Mohamed HI, Shaikh H, Elhakem A (2022) Biological control of root-knot nematode Meloidogyne incognita in Psoralea corylifolia plant by enhancing the biocontrol efficacy of Trichoderma harzianum using press mud. Phyton 91(8):1757–1777. https://doi.org/10.32604/phyton.2022.021267

    Article  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16:3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogbe AA, Finnie JF, van Staden J (2020) The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South Afr J Bot 134:126–134

    Article  CAS  Google Scholar 

  • Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481

    Article  PubMed  PubMed Central  Google Scholar 

  • Panis B, Nagel M, Van den Houwe I (2020) Challenges and prospects for the conservation of crop genetic resources in field genebanks, in vitro collections and/or in liquid nitrogen. Plants 9:1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parlindo F, Wiyono S, Toding Tondok E (2023) Endophytic fungi and their potential in controlling white root disease of cashew. CAAS Agric J 59(1):73–91. https://doi.org/10.17221/134/2021-PPS

    Article  CAS  Google Scholar 

  • Pavithra G, Bindal S, Rana M, Srivastava S (2020) Role of endophytic microbes against plant pathogens: A review. Asian J Plant Sci 19:54–62

    Google Scholar 

  • Pelo S, Mavumengwana V, Green E (2020) Diversity and antimicrobial activity of culturable fungal endophytes in Solanum mauritianum. Int J Environ Res Public Health 17:439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano S (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Chapter  Google Scholar 

  • Petrolli R, Augusto Vieira C, Jakalski M, Bocayuva MF, Vallé C, Cruz EDS, Selosse MA, Martos F, Kasuya MCM (2021) A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. New Phytol 231:2002–2014

    Article  CAS  PubMed  Google Scholar 

  • Phurailatpam L, Mishra S (2020) Role of plant endophytes in conferring abiotic stress tolerance. In: Plant ecophysiol. adapt. climate change: mech. perspect. II: mech. adapt. stress amelioration, pp 603–628

    Google Scholar 

  • Pradhan J, Sarma A, Kalita S, Talukdar R, Tayung K (2023) Plant growth-promoting effect of seed-borne endophytic fungi isolated from senna Alata (L.) Roxb. Proc Natl Acad Sci India Sect B Biol Sci 93:901–908. https://doi.org/10.1007/s40011-023-01483-2

    Article  Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and challenges. In: PGPR amelioration in sustainable agriculture, pp 129–157

    Chapter  Google Scholar 

  • Preethi K, Manon Mani V, Lavanya N (2021) Endophytic fungi: A potential source of bioactive compounds for commercial and therapeutic applications. In: Endophytes: potential source of compounds of commercial and therapeutic applications, pp 247–272

    Chapter  Google Scholar 

  • Prince L, Raja A, Prabakaran P (2011) Antagonistic potentiality of some soil mycoflora against Colletotrichum falcatum. World J Sci Technol 1:39–42

    Google Scholar 

  • Priyadarshini MS, Panigrahi S, Rath C (2022) Endophytes: novel microorganisms for plant growth promotion. Darshan, Tamil Nadu

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Qayyum MA, Wakil W, Arif MJ, Sahi ST, Dunlap CA (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol Control 90:200–207. https://doi.org/10.1016/j.biocontrol.2015.04.005

    Article  Google Scholar 

  • Rai M, Agarkar G (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42:428–438

    Article  CAS  PubMed  Google Scholar 

  • Rajab L, Ahmad M, Gazal I (2020) Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egypt J Biol Pest Cont 30:143. https://doi.org/10.1186/s41938-020-00344-8

    Article  Google Scholar 

  • Rajini SB, Nandhini M, Udayashankar AC, Niranjana SR, Lund OS, Prakash HS (2020) Diversity, plant growth-promoting traits, and biocontrol potential of fungal endophytes of Sorghum bicolor. Plant Pathol 69:642–654. https://doi.org/10.1111/ppa.13151

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK (2020) Endophytic microbes: Biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107

    Article  CAS  PubMed  Google Scholar 

  • Reininger V, Sieber TN (2013) Mitigation of antagonistic effects on plant growth due to root co-colonization by dark septate endophytes and ectomycorrhiza. Environ Microbiol Rep 5:892–898

    Article  CAS  PubMed  Google Scholar 

  • Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, Gilligan CA, Jones CM (2021) The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci 118:e2022239118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas EC, Jensen B, Jørgensen HJ, Latz MA, Esteban P, Ding Y, Collinge DB (2020) Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control 144:104222

    Article  CAS  Google Scholar 

  • Rondot Y, Reineke A (2018) Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biol Control 116:82–89. https://doi.org/10.1016/j.biocontrol.2016.10.006

    Article  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2019) The hologenome concept of evolution: Medical implications. Rambam Maimonides Med J 10(1):e5. https://doi.org/10.5041/RMMJ.10359

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Scorsetti AC (2015) Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Sci Technol 25(4):475–480. https://doi.org/10.1080/09583157.2014.982511

    Article  Google Scholar 

  • Sadeghi F, Sampsampour D, Seyahooei MA, Bagheri A, Soltani J (2020) Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): toward regulating the ascorbate-glutathione cycle. Sci Hortic 261:108991

    Article  CAS  Google Scholar 

  • Safari Motlagh MR, Jahangiri B, Kulus D, Tymoszuk A, Kaviani B (2022) Endophytic fungi as potential biocontrol agents against Rhizoctonia solani J.G. Kühn, the causal agent of rice sheath blight disease. Biology 11:1282. https://doi.org/10.3390/biology11091282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Sallam N, Ali EF, Seleim MAA, Khalil Bagy HMM (2021) Endophytic fungi associated with soybean plants and their antagonistic activity against Rhizoctonia Solani. Egypt J Biol Pest Control 31:54. https://doi.org/10.1186/s41938-021-00402-9

    Article  Google Scholar 

  • Samreen T, Naveed M, Nazir MZ, Asghar HN, Khan MI, Zahir ZA, Kanwal S, Jeevan B, Sharma D, Meena VS, Meena SK, Sarkar D, Devika OS, Parihar M, Choudhary M (2021) Seed associated bacterial and fungal endophytes: Diversity, life cycle, transmission, and application potential. Appl Soil Ecol 168:104191. https://doi.org/10.1016/j.apsoil.2021.104191

    Article  Google Scholar 

  • Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño ÁM, García-Mina JM, Del Campillo MC, Quesada-Moraga E (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol Control 116:90–102. https://doi.org/10.1016/j.biocontrol.2017.01.012

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Saragih M, Trizelia, Nurbailis, Yusniwati (2019) Endophytic colonization and plant growth promoting effect by entomopathogenic fungus, Beauveria bassiana to red chili (Capsicum annuum L.) with different inoculation methods. IOP Conf Ser Earth Environ Sci 305:12070. https://doi.org/10.1088/1755-1315/305/1/012070

    Article  Google Scholar 

  • Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284. https://doi.org/10.1016/j.bcab.2019.101284

    Article  Google Scholar 

  • Shah ST, Basit A, Sajid M, Mohamed HI (2021) Microorganism: a potent biological tool to combat insects and herbivores. In: Mohamed HI, El-Beltagi HEDS, Abd-Elsalam KA (eds) Plant growth-promoting microbes for sustainable biotic and abiotic stress management. Springer, Cham https://doi.org/10.1007/978-3-030-66587-6_19

    Chapter  Google Scholar 

  • Sharma I, Raina A, Choudhary M, Kaul S, Dhar MK (2023) Fungal endophyte bioinoculants as a green alternative towards sustainable agriculture. Heliyon 9(9):e19487. https://doi.org/10.1016/j.heliyon.2023.e19487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui I, Shaukat S (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett Appl Microbiol 38:169–175

    Article  CAS  PubMed  Google Scholar 

  • Sietio OM, Tuomivirta T, Santalahti M, Kiheri H, Timonen S, Sun H, Fritze H, Heinonsalo J (2018) Ericoid plant species and Pinus sylvestris shape fungal communities in their roots and surrounding soil. New Phytol 218:738–751

    Article  PubMed  Google Scholar 

  • da Silva LL, Veloso TG, Manhães JH, da Silva CC, de Queiroz MV (2020) The plant organs and rhizosphere determine the common bean mycobiome. Braz J Microbiol 51:765–772

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva SD, Carneiro RMDG, Faria M, Souza DA, Monnerat RG, Lopes RB (2017) Evaluation of Pochonia Chlamydosporia and Purpureocillium lilacinum for suppression of Meloidogyne Enterolobii on tomato and banana. J Nematol 49:77–85. https://doi.org/10.21307/jofnem-2017-047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva-Valenzuela M, Rojas-Martínez RI, Manzanilla-López RH, Macías-Rubalcava ML, Aranda-Ocampo S, Zavaleta-Mejía E (2023) Antagonistic potential of endophytic fungi against Meloidogyne enterolobii, M. Incognita and Nacobbus aberrans sensu lato. Biol Control 186:105343. https://doi.org/10.1016/j.biocontrol.2023.105343

    Article  CAS  Google Scholar 

  • Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, Sachan SG (2020) Tiny microbes, big yields: Microorganisms for enhancing food crop production for sustainable development. In: New and future developments in microbial biotechnology and bioengineering. Elsevier,

    Google Scholar 

  • Singh A, Kumar J, Sharma VK, Singh DK, Kumari P, Nishad JH, Gautam VS, Kharwar RN (2021) Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. South Afr J Bot 140:87–94. https://doi.org/10.1016/j.sajb.2021.03.004

    Article  CAS  Google Scholar 

  • Soliman M, Ameen H, Elkelany U (2017) Effect of treatment time on biocontrol efficacy of Bacillus amyloliquefaciens, Lysini-bacillus sphaericus and their fusants against root knot nematode, Meloidogyne incognita infecting tomato plants. Middle East J Agric 6:369–375

    Google Scholar 

  • Soltani J, Moghaddam MSH (2014) Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Arch Microbiol 196:635–644. https://doi.org/10.1007/s00203-014-0997-8

    Article  CAS  PubMed  Google Scholar 

  • Sornakili A, Thankappan S, Sridharan A, Nithya P, Uthandi S (2020) Antagonistic fungal endophytes and their metabolite-mediated interactions against phytopathogens in rice. Physiol Mol Plant Pathol 112:101525

    Article  CAS  Google Scholar 

  • Stroheker S, Queloz V, Sieber TN (2016) Spatial and temporal dynamics in the Phialocephala fortinii sl-Acephala applanata species complex (PAC). Plant Soil 407:231–241

    Article  CAS  Google Scholar 

  • Strom N, Hu W, Haarith D, Chen S, Bushley K (2020) Corn and soybean host root endophytic fungi with toxicity toward the soybean cyst nematode. Phytopathology 110:603–614. https://doi.org/10.1094/PHYTO-07-19-0243-R

    Article  CAS  PubMed  Google Scholar 

  • Suebrasri T, Harada H, Jogloy S, Ekprasert J, Boonlue S (2020a) Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 16:100271. https://doi.org/10.1016/j.rhisph.2020.100271

    Article  Google Scholar 

  • Suebrasri T, Somteds A, Harada H, Kanokmedhakul S, Jogloy S, Ekprasert J, Lumyong S, Boonlue S (2020b) Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease. Rhizosphere 16:100250. https://doi.org/10.1016/j.rhisph.2020.100250

    Article  Google Scholar 

  • Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology 1:65–76. https://doi.org/10.1080/21501203.2012.656724

    Article  Google Scholar 

  • Sun BT, Akutse KS, Xia XF, Chen JH, Ai X, Tang Y, Wang Q, Feng BW, Goettel MS, You MS (2018) Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta 248:705–714

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liao J, Lu J, Lin R, Zou M, Xie B, Cheng X (2024) Parasitism of Hirsutella rhossiliensis on different nematodes and its endophytism promoting plant growth and resistance against root-knot nematodes. J Fungi 10(1):68. https://doi.org/10.3390/jof10010068

    Article  CAS  Google Scholar 

  • Sunkad G, Patil MS, Devanna P et al (2023) Molecular characterization, diversity analysis, and biocontrol potential of endophytic fungi for suppression of dry root rot caused by Rhizoctonia bataticola in chickpea. Indian Phytopathol 76:1117–1125. https://doi.org/10.1007/s42360-023-00685-y

    Article  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54:663–669. https://doi.org/10.1007/s10526-009-9216-y

    Article  Google Scholar 

  • Terhonen E, Kerio S, Sun H, Asiegbu FO (2014) Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. Fungal Ecol 9:17–26

    Article  Google Scholar 

  • Terhonen E, Blumenstein K, Kovalchuk A, Asiegbu FO (2019) Forest tree microbiomes and associated fungal endophytes: Functional roles and impact on forest health. Forests 10:42

    Article  Google Scholar 

  • Thirumurugan A, Velayutham A (2021) Tamilnadu Agricultural University and NABARD, Chennai

    Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS (2013) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool-temperate forest. PLoS One 8:e78248

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L, Škrbić BD, Jigjiddorj EA, Vágvölgyi C (2020) Characterization of the plant growth-promoting activities of endophytic fungi isolated from Sophora flavescens. Microorganisms 8:683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udayan E, Gnanadoss JJ (2023) Potential of endophytic fungi as therapeutics: Antibiotics, antiviral and anticancer properties. Res J Biotechnol 18:6. https://doi.org/10.25303/1806rjbt1320145

    Article  Google Scholar 

  • Ul Haq I, Ijaz S (2020) History and recent trends in plant disease control: an overview. In: Ul Haq I, Ijaz S (eds) Plant disease management strategies for sustainable agriculture through traditional and modern approaches. Sustainability in plant and crop protection, vol 13. Springer, Cham https://doi.org/10.1007/978-3-030-35955-3_1

    Chapter  Google Scholar 

  • Usall J, Teixidó N, Fons E, Vinas I (2000) Biological control of blue mould on apple by a strain of Candida sake under several controlled atmosphere conditions. Int J Food Microbiol 58:83–92

    Article  CAS  PubMed  Google Scholar 

  • Usman A, Siddiqui M (2012) Effect of some fungal strains for the management of root-knot nematode (Meloidogyne incognita) on eggplant (Solanum melongena). J Agric Technol 8:213–218

    Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci 264:48–56

    Article  CAS  PubMed  Google Scholar 

  • Vijayabharathi R, Gopalakrishnan S, Sathya A, Vasanth Kumar M, Srinivas V, Mamta S (2018) Streptomyces sp. as plant growth-promoters and host-plant resistance inducers against Botrytis Cinerea in chickpea. BioControl Sci Technol 28:1140–1163. https://doi.org/10.1080/09583157.2018.1515890

    Article  Google Scholar 

  • Vishwakarma K, Kumar N, Shandilya C, Varma A (2021) Unravelling the role of endophytes in micronutrient uptake and enhanced crop productivity. In: Shrivastava N, Mahajan S, Varma A (eds) Symbiotic soil microorganisms. Soil biology, vol 60. Springer, Cham https://doi.org/10.1007/978-3-030-51916-2_4

    Chapter  Google Scholar 

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527

    Article  PubMed  Google Scholar 

  • Wang G, Ren Y, Bai X, Su Y, Han J (2022) Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants 11:3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Luo W, Cheng S, Zhang H, Zong J, Zhang Z (2023) Ralstonia solanacearum—A soil-borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. Front Plant Sci 14:1141902

    Article  PubMed  PubMed Central  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Shahzad R, Kang SM, Kim JG, Lee IJ (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 1:280–287. https://doi.org/10.1080/17429145.2015.1079743

    Article  CAS  Google Scholar 

  • Waweru B, Turoop L, Kahangi E, Coyne D, Dubois T (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.). Biol Control 74:82–88. https://doi.org/10.1016/j.biocontrol.2014.04.002

    Article  Google Scholar 

  • Wei F, Zhang Y, Shi Y, Feng H, Zhao L, Feng Z, Zhu H (2019) Evaluation of the biocontrol potential of endophytic fungus Fusarium solani CEF559 against Verticillium dahliae in cotton plant. Biomed Res Int. https://doi.org/10.1155/2019/3187943

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson B, Addy H, Tsuneda A, Hambleton S, Currah R (2004) Phialocephala sphaeroides sp. nov., a new species among the dark septate endophytes from a boreal wetland in Canada. Can J Bot 82:607–617

    Article  CAS  Google Scholar 

  • Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G (2022) The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms 10(5):1072. https://doi.org/10.3390/microorganisms10051072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Liao X, Yan Q, Xie Y, Chen J, Liang G, Chen M, Xiao S, Chen Y, Liu J (2023) Arbuscular mycorrhizal fungi improve the growth, water status, and nutrient uptake of cinnamomum migao and the soil nutrient stoichiometry under drought stress and recovery. J Fungi 9:321. https://doi.org/10.3390/jof9030321

    Article  CAS  Google Scholar 

  • Xie XG, Dai CC, Li XG et al (2017) Reduction of soil-borne pathogen Fusarium solani reproduction in soil enriched with phenolic acids by inoculation of endophytic fungus Phomopsis liquidambari. BioControl 62:111–123. https://doi.org/10.1007/s10526-016-9773-9

    Article  CAS  Google Scholar 

  • Xu T, Cao L, Zeng J, Franco CM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z (2019) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh‑2 as a potential biocontrol agent against the rice blast pathogen. Pest Biochem Physiol 160:58–69

    Article  CAS  Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340

    CAS  PubMed  Google Scholar 

  • Yang EF, Karunarathna SC, Tibpromma S, Stephenson SL, Promputtha I, Elgorban AM, Al-Rejaie S, Chomnunti P (2023) Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal pathogens. Agronomy 13(1):169. https://doi.org/10.3390/agronomy13010169

    Article  CAS  Google Scholar 

  • Zhang SX, Zhang X (2009) Effects of two composted plant pesticide residues, incorporated with Trichoderma viride, on root-knot nematode in balloonflower. Agric Sci China 8:447–454

    Article  Google Scholar 

  • Zhang S, Gan Y, Xu B, Xue Y (2014) The parasitic and lethal effects of Trichoderma longibrachiatum against Heterodera avenae. Biol Control 72:1–8. https://doi.org/10.1016/j.biocontrol.2014.01.009

    Article  Google Scholar 

  • Zhou W, Verma VC, Wheeler TA, Woodward JE, Starr JL, Sword GA (2020) Tapping into the cotton fungal phytobiome for novel nematode biological control tools. Phytobiomes J 4:19–26. https://doi.org/10.1094/PBIOMES-08-19-0043-SC

    Article  Google Scholar 

  • Zhu Q, Fei YJ, Wu YB, Luo DL, Chen M, Sun K, Zhang W, Dai CC (2023) Endophytic fungus reshapes spikelet microbiome to reduce mycotoxin produced by Fusarium proliferatum through altering rice metabolites. J Agric Food Chem 71(30):11350–11364. https://doi.org/10.1021/acs.jafc.3c02616

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MM, AB, KA, HA, WL, LL, and HIM conceived the study. MM, AB, KA, HA, WL, LL, and HIM performed the analyses. MM, AB, KA, HA, WL, LL, and HIM interpreted the data. HIM reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

M. Muhammad, A. Basit, K. Ali, W.-J. Li, L. Li and H.I. Mohamed declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, M., Basit, A., Ali, K. et al. Endophytic Fungi as Potential Bio-Control Agents of Soil-Borne Pathogen. Journal of Crop Health (2024). https://doi.org/10.1007/s10343-024-00975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10343-024-00975-z

Keywords

Navigation