Skip to main content
Log in

Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Holocellulase production by Aspergillus niger using raw sugarcane bagasse (rSCB) as the enzyme-inducing substrate is hampered by the intrinsic recalcitrance of this material. Here we report that mild hydrothermal pretreatment of rSCB increases holocellulase secretion by A. niger. Quantitative proteomic analysis revealed that pretreated solids (PS) induced a pronounced up-regulation of endoglucanases and cellobiohydrolases compared to rSCB, which resulted in a 10.1-fold increase in glucose release during SCB saccharification. The combined use of PS and pretreatment liquor (PL), referred to as whole pretreated slurry (WPS), as carbon source induced a more balanced up-regulation of cellulases, hemicellulases and pectinases and resulted in the highest increase (4.8-fold) in the release of total reducing sugars from SCB. The use of PL as the sole carbon source induced the modulation of A. niger’s secretome towards hemicellulose degradation. Mild pretreatment allowed the use of PL in downstream biological operations without the need for undesirable detoxification steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bigelow M, Wyman CE (2002) Cellulase production on bagasse pretreated with hot water. In: Finkelstein M, McMillan JD, Davison BH (eds) Biotechnology for fuels and chemicals. Applied biochemistry and biotechnology. Humana Press, Totowa, NJ

    Google Scholar 

  2. Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, Squina FM, Buckeridge M, Goldman GH, de Castro Oliveira JV (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10:e0129275

    Article  Google Scholar 

  3. Borin GP, Sanchez CC, Santana ES, Zanini GK, Santos RAC, Pontes AO, Souza AT, Dal RMMTS, Riaño-Pachón DM, Goldman GH (2017) Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genom 18:501

    Article  Google Scholar 

  4. Cai P, Gu R, Wang B, Li J, Wan L, Tian C, Ma Y (2014) Evidence of a critical role for cellodextrin transporte 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa. PLoS One 9:e89330

    Article  Google Scholar 

  5. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494

    Article  CAS  Google Scholar 

  6. Crowell AM, Wall MJ, Doucette AA (2013) Maximizing recovery of water-soluble proteins through acetone precipitation. Anal Chim Acta 796:48–54

    Article  CAS  Google Scholar 

  7. Daly P, van Munster JM, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Pullan ST, Delmas S, Waldron PR, Grigoriev IV, Tucker GA, Simmons BA, Archer DB (2017) Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnol Biofuels 10:35. https://doi.org/10.1186/s13068-017-0700-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Carvalho DM, Martínez-Abad A, Evtuguin DV, Colodette JL, Lindström ME, Vilaplana F, Sevastyanova O (2017) Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr Polym 156:223–234

    Article  Google Scholar 

  9. de Souza AP, Leite DC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. BioEnergy Res 6:564–579

    Article  CAS  Google Scholar 

  10. de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MHS, de Vries RP, Goldman GH (2013) The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol 60:29–45

    Article  Google Scholar 

  11. Gomes HAR, da Silva AJ, Gómez-Mendoza DP, dos Santos Júnior ACM, di Cologna NDM, Almeida RM, Miller RNG, Fontes W, de Sousa MV, Ricart CAO, Filho EXF (2017) Identification of multienzymatic complexes in the Clonostachys byssicola secretomes produced in response to different lignocellulosic carbon sources. J Biotechnol 254:51–58

    Article  CAS  Google Scholar 

  12. Gong W, Dai L, Zhang H, Zhang L, Wang L (2018) A highly efficient xylan-utilization system in Aspergillus niger An76: a functional-proteomics study. Front Microbiol 9:430

    Article  Google Scholar 

  13. Gruben BS, Mäkelä MR, Kowalczyk JE, Zhou M, Benoit-Gelber I, De Vries RP (2017) Expression-based clustering of CAZyme-encoding genes of Aspergillus niger. BMC Genom 18:900

    Article  Google Scholar 

  14. Johnson E (2016) Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuels Bioprod Biorefin 10:164–174

    Article  CAS  Google Scholar 

  15. Li X, Lu J, Zhao J, Qu Y (2014) Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production. PLoS One 9:e95455

    Article  Google Scholar 

  16. Liu L, Gong W, Sun X, Chen G, Wang L (2018) Extracellular enzyme composition and functional characteristics of Aspergillus niger An-76 induced by food processing byproducts and based on integrated functional omics. J Agric Food Chem 66:1285–1295

    Article  CAS  Google Scholar 

  17. Miller G (1959) Modified DNS method for reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  18. Nielsen H (2017) Predicting secretory proteins with SignalP. In: Kihara D (ed) Protein function prediction. Methods in molecular biology, vol 1611. Humana Press, New York, NY

    Chapter  Google Scholar 

  19. Peciulyte A, Samuelsson L, Olsson L, McFarland K, Frickmann J, Østergård L, Halvorsen R, Scott BR, Johansen KS (2018) Redox processes acidify and decarboxylate steam-pretreated lignocellulosic biomass and are modulated by LPMO and catalase. Biotechnol Biofuels 11:165

    Article  Google Scholar 

  20. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896

    Article  CAS  Google Scholar 

  21. Rocha GJ, Silva VF, Martín C, Gonçalves AR, Nascimento VM, Souto-Maior AM (2013) Effect of xylan and lignin removal by hydrothermal pretreatment on enzymatic conversion of sugarcane bagasse cellulose for second generation ethanol production. Sugar Tech 15:390–398

    Article  CAS  Google Scholar 

  22. Scott BR, Huang HZ, Frickman J, Halvorsen R, Johansen KS (2016) Catalase improves saccharification of lignocellulose by reducing lytic polysaccharide monooxygenase-associated enzyme inactivation. Biotech Lett 38:425–434

    Article  CAS  Google Scholar 

  23. Silva CdOG, de Aquino Ribeiro JA, Souto AL, Abdelnur PV, Batista LR, Rodrigues KA, Parachin NS, Ferreira Filho EX (2018) Sugarcane bagasse hydrothermal pretreatment liquors as suitable carbon sources for hemicellulase production by Aspergillus niger. BioEnergy Res 11:316

    Article  CAS  Google Scholar 

  24. Silva CdOG, Ferreira Filho EX (2017) A review of holocellulase production using pretreated lignocellulosic substrates. BioEnergy Res 10:592–602

    Article  CAS  Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL Laboratory Analytical Procedure NREL/TP-510-42623. National Renewable Energy Laboratory, Golden, CO

  26. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2005) Determination of extractives in biomass. NREL Laboratory Analytical Procedure NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, CO

  27. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, CO

  28. Souza WR, Maitan-Alfenas GP, Gouvêa PF, Brown NA, Savoldi M, Battaglia E (2013) The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol. https://doi.org/10.1016/j.fgb.2013.07.007

    Article  PubMed  Google Scholar 

  29. Yang B, Tao L, Wyman CE (2017) Strengths, challenges, and opportunities for hydrothermal pretreatment in lignocellulosic biorefineries. Biofuels Bioprod Biorefin 12(1):125–138

    Article  Google Scholar 

  30. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451

    Article  CAS  Google Scholar 

  31. Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JH (2014) Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. J Biol Chem 289:2610–2619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES) and the Foundation for Research Support of the Federal District (FAPDF, Grant PRONEX 0193.001195/2016). Funding was also provided by the Funding Authority for Studies and Projects (FINEP/CT-INFRA, Grants 0439/2011 and 0694/2013) to MVS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio de Oliveira Gorgulho Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 798 kb)

Supplementary material 2 (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Gorgulho Silva, C., de Castro Moreira dos Santos Júnior, A., Santana, R.H. et al. Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger. J Ind Microbiol Biotechnol 46, 1517–1529 (2019). https://doi.org/10.1007/s10295-019-02207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02207-0

Keywords

Navigation