Skip to main content
Log in

Effect of Xylan and Lignin Removal by Hydrothermal Pretreatment on Enzymatic Conversion of Sugarcane Bagasse Cellulose for Second Generation Ethanol Production

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This work was aimed to evaluate the effect of the removal of hemicellulose and lignin, by hydrothermal pretreatment, carried out at four different temperatures, namely 180, 185, 190 and 195 °C, for 10 min in a 20-L reactor, and alkaline delignification with 1.0 % (w/v) NaOH, at 100 °C for 1 h, on the enzymatic saccharification of sugarcane bagasse cellulose. For the material pretreated under the most severe conditions (1.0 % (w/v) NaOH, 100 °C, 1 h and 195 °C, 10 min), 95.8 % of the hemicellulosic fraction and 80.9 % of lignin were solubilised upon pretreatment and delignification respectively. The enzymatic conversion of the material obtained under those conditions reached 89.2 % of the initial cellulose, whereas it was 69.2 % for the pretreated but non-delignified material and only 6.0 % for raw bagasse. Models describing the effect of hemicellulose and lignin content on the enzymatic hydrolysis were developed. The statistical analysis of the results emphasized the significance of removal of the hemicellulose and lignin for improving the enzymatic hydrolysis of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agbor, V.B., N. Cicek, R. Sparling, A. Berlin, and D.B. Levin. 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances 29: 675–685.

    Article  PubMed  CAS  Google Scholar 

  • Cardona, C.A., J.A. Quintero, and I.C. Paz. 2010. Production of bioethanol from sugarcane bagasse: Status and perspectives. Bioresource Technology 101: 4754–4766.

    Article  PubMed  CAS  Google Scholar 

  • Chandel, A.K., S.S. Silva, W. Carvalho, and O.V. Singh. 2012. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bioproducts. Journal of Chemical Technology and Biotechnology 87: 11–20.

    Article  CAS  Google Scholar 

  • Cruz, S.H., B.S. Dien, N.N. Nichols, B.C. Saha, and M.A. Cotta. 2012. Advanced conversion technologies for sugars and biofuels: superior feedstocks, pretreatments, inhibitor removal, and enzymes. Journal of Industrial Microbiology and Biotechnology 39: 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Dyk, J.S.V., and B.L. Plerschke. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnology Advances 30: 1458–1480.

    Article  PubMed  Google Scholar 

  • Gálvez, L.O., A. Cabello, G. Villamil, A. García, A. Martín, and R. Costales. 2000. Manual de los Derivados de la Caña de Azúcar. Ed. MINAZ, Habana, Cuba, 3ra. Ed., pp. 35.

  • Garrote, G., H. Domínguez, and J.C. Parajó. 1999. Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products 57: 191–202. doi:10.1007/s001070050039.

    Google Scholar 

  • Giese, E.C., M. Pierozzi, K.J. Dussán, A.K. Chandel, and S.S. Silva. 2013. Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzymatic preparations. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.3968.

    Google Scholar 

  • Gouveia, E.R., R.T. Nascimento, A.M. Souto-Maior, and G.J.M. Rocha. 2009. Comparison of SHF and SSF processes from sugar cane bagasse for ethanol production by Saccharomyces cerevisiae. Química Nova 32: 1500–1503.

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal, B., M. Galbe, M.F. Gorwa-Grauslund, G. Lidén, and G. Zacchi. 2006. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology 24: 549–556.

    Article  PubMed  Google Scholar 

  • Himmel, M.E., S.H. Ding, D.K. Johnson, W.S. Adney, M.R. Nimlos, J.W. Brady, and T.D. Foust. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, J.B., L.G. Thygesen, C. Felby, H. Jorgensen, and T. Elder. 2008. Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnology for Biofuels. doi:10.1186/1754-6834-1-5.

    PubMed  Google Scholar 

  • Lora, J.H., and M. Wayman. 1978. Delignification of hardwoods by autohydrolysis and extraction. Tappi Journal 61: 47–50.

    CAS  Google Scholar 

  • Mandels, M., R. Andreotti, and C. Roche. 1976. Measurement of saccharifying cellulose. Biotechnology and Bioengineering Symposium 6: 21–33.

    PubMed  CAS  Google Scholar 

  • Martín, Carlos, Rocha, George Jackson de Moraes, Santos, Julliana Ribeiro Alves dos, Wanderley, Maria Carolina de Albuquerque, and Gouveia, Ester Ribeiro. 2012. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse. Química Nova 35(10):1927–1930. doi:10.1590/S0100-40422012001000007.

  • Masarin, F., D.B. Gurpilhares, D.C.F. Baffa, M.H.P. Barbosa, W. Carvalho, A. Ferraz, and A.M.F. Miladres. 2011. Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for Biofuels 4: 1–10.

    Article  Google Scholar 

  • Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination ofs Reducing Sugar. Analytical Chemistry. doi:10.1021/ac60147a030.

    Google Scholar 

  • Mongkolthanaruk, W., and S. Dharmsthiti. 2002. Biodegradation of lipid-richwastewater by a mixed bacterial consortium. International Biodeterioration and Biodegradation 50: 101–105.

    Article  CAS  Google Scholar 

  • Mussatto, S.I., M. Fernandes, A.M.F. Milagres, and I.C. Roberto. 2008. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme and Microbial Technology 43: 124–129.

    Article  CAS  Google Scholar 

  • Öhgren, K., R. Bura, J. Saddler, and G. Zacchi. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology 98: 2503–2510.

    Article  PubMed  Google Scholar 

  • Oliveira, F.M.V. 2010. Avaliação de diferentes pré-tratamentos e deslignificação alcalina na sacarificação na celulose de palha de cana. Dissertation, Lorena: Universidade de São Paulo.

  • Overend, R.P., and E. Chornet. 1987. Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments [and Discussion]. Philosophical Transactions of the Royal Society of London 321: 523–536.

    CAS  Google Scholar 

  • Palonen, H. 2004. Role of lignin in the enzymatic hydrolysis of lignocellulose. PhD thesis, 13–32, Helsinki: University of Technology.

  • Petersen, M.O., J. Larsen, and M.H. Thomsen. 2009. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass and Bioenergy 33: 834–840.

    Article  CAS  Google Scholar 

  • Ramos, L.P., M.M. Nazhad, and J.N. Saddler. 1993. Effect of enzymatic-hydrolysis on the morphology and fine-structure of pretreated cellulosic residues. Enzyme and Microbial Technology. doi:10.1016/0141-0229(93)90093-H.

    Google Scholar 

  • Rezende, C.A., M.A. de Lima, P. Maziero, E.R. de Azevedo, W. Garcia, and I. Polikarpov. 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 11: 4–54.

    Google Scholar 

  • Silva, V.F.N., P.V. Arruda, M.G.A. Felipe, A.R. Gonçalves, and G.J.M. Rocha. 2011. Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. Journal of Industrial Microbiology and Biotechnology 38: 809–817.

    Article  PubMed  CAS  Google Scholar 

  • Siqueira, G., A.M.F. Milagres, W. Carvalho, G. Koch, and A. Ferraz. 2011. Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnology for Biofuels. doi:10.1186/1754-6834-4-7.

    PubMed  Google Scholar 

  • Thomsen, M.H., A. Thygesen, and A.B. Thomsen. 2008. Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology 99: 4221–4228.

    Article  PubMed  CAS  Google Scholar 

  • UNICA. 2012. União da Indústria de Cana-de-açúcar. http://www.unica.com.br. Accessed 20 January 2012.

  • Wyman, C. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology 25: 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, C.E., B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, and Y.Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology 96: 1959–1966.

    Article  PubMed  CAS  Google Scholar 

  • Yang, B., and C.E. Wyman. 2004. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering 86: 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y.H.P., S.Y. Ding, J.R. Mielens, R. Elander, M. Laser, and M. Himmel. 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering 97: 214–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). Novozymes Latin America Ltd. is thanked for supplying the enzyme preparations. CM gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. M. Rocha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, G.J.M., Silva, V.F.N., Martín, C. et al. Effect of Xylan and Lignin Removal by Hydrothermal Pretreatment on Enzymatic Conversion of Sugarcane Bagasse Cellulose for Second Generation Ethanol Production. Sugar Tech 15, 390–398 (2013). https://doi.org/10.1007/s12355-013-0218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0218-9

Keywords

Navigation