Skip to main content

Advertisement

Log in

Targeting redox regulation and autophagy systems in cancer stem cells

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CSCs:

Cancer stem cells

ROS:

Reactive oxygen species

O2 :

Superoxide

H2O2 :

Hydrogen peroxide

OH :

Hydroxyl radical

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

HSCs:

Haematopoietic stem cells

EMT:

Epithelial-mesenchymal transition

PIP3:

Phosphatidylinositol 3,4,5-trisphosphate

PIP2:

Phosphatidylinositol 4,5-bisphosphate

HIF-1:

Hypoxia-inducible factor-1

Keap1:

Kelch-like ECH-associated protein 1

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

LSCs:

Leukemic stem cells

SODs:

Superoxide dismutases

Nrf2:

Nuclear factor erythroid 2-related factor

GSH:

Glutathione

ATM:

Ataxia telangiectasia mutation

PI3K:

Phosphoinositide 3-kinase

EMT:

Epithelial-mesenchymal transition

JNK:

C-Jun N-terminal kinase

AML:

Acute myelogenous leukemia

Trx:

Thioredoxin

TrxR:

Thioredoxin reductase

Grx:

Glutaredoxin

Prdx:

Peroxiredoxins

VEGF:

Vascular endothelial growth factor

TXNIP:

Thioredoxin-interacting protein

COX:

Cyclooxygenase

FOXO:

Forkhead homeobox type O

PHDs:

Prolyl hydroxylase domain proteins

References

  1. Sameer Ullah, Khan Kaneez, Fatima Shariqa, Aisha Baseerat, Hamza Fayaz, Malik (2023) Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Medical Oncology 40(1):12. https://doi.org/10.1007/s12032-022-01871-0

    Article  Google Scholar 

  2. Mittler R. ROS are good. Trends Plant Sci. 2017;22(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  3. Clerkin J, Naughton R, Quiney C, Cotter T. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer lett. 2008;266(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kim HS, Loughran PA, Rao J, Billiar TR, Zuckerbraun BS. Carbon monoxide activates NF-κB via ROS generation and Akt pathways to protect against cell death of hepatocytes. Am J of Physiol-Gastrointest Liver Physiol. 2008;295(1):G146–52.

    Article  CAS  Google Scholar 

  5. Komatsu W, Itoh K, Akutsu S, Kishi H, Ohhira S. Nasunin inhibits the lipopolysaccharide-induced pro-inflammatory mediator production in RAW264 mouse macrophages by suppressing ROS-mediated activation of PI3 K/Akt/NF-κB and p38 signaling pathways. Biosci Biotechnol Biochem. 2017;81(10):1956–66.

    Article  CAS  PubMed  Google Scholar 

  6. Lim W, Yang C, Bazer FW, Song G. Chrysophanol induces apoptosis of choriocarcinoma through regulation of ROS and the AKT and ERK1/2 pathways. J Cell Physiol. 2017;232(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  7. Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct. 2011;2011:1–6.

    Article  Google Scholar 

  8. Jalmi SK, Sinha AK. ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front plant sci. 2015;6:769.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Huang J, Wang L, Chen C, Yang D, Jin M, et al. Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. J Thorac Dis. 2017;9(11):4398.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell. 2021;81(18):3691–707.

    Article  CAS  PubMed  Google Scholar 

  11. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol cancer. 2017;16(1):1–12.

    Article  Google Scholar 

  13. Jin F, Wu Z, Hu X, Zhang J, Gao Z, Han X, et al. The PI3K/Akt/GSK-3β/ROS/eIF2B pathway promotes breast cancer growth and metastasis via suppression of NK cell cytotoxicity and tumor cell susceptibility. Cancer biol & med. 2019;16(1):38.

    Article  Google Scholar 

  14. Zhang Z, Duan Q, Zhao H, Liu T, Wu H, Shen Q, et al. Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade. Cancer let. 2016;382(1):53–63.

    Article  CAS  Google Scholar 

  15. Gao L, Loveless J, Shay C, Teng YJ. Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Rev New Drug Targ Age-Related Disord. 2020;1260:1–12.

    Article  CAS  Google Scholar 

  16. Gopal YV, Rizos H, Chen G, Deng W, Frederick DT, Cooper ZA, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma. Cancer res. 2014;74(23):7037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 2013;23(3):302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front genet. 2019;10:435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de la Vega MR, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell. 2018;34(1):21–43.

    Article  PubMed Central  Google Scholar 

  20. Evans MJ, Scarpulla RC. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes & Dev. 1990;4(6):1023–34.

    Article  CAS  Google Scholar 

  21. Blesa JR, Hernandez-Yago J. Distinct functional contributions of 2 GABP–NRF-2 recognition sites within the context of the human TOMM70 promoter. Biochem cell biol. 2006;84(5):813–22.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mole cell biol. 2003;23(22):8137–51.

    Article  CAS  Google Scholar 

  23. Giudice A, Arra C, Turco MC. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Transcr Factors. 2010;647:37–74.

    Article  CAS  Google Scholar 

  24. Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends cell biol. 2020;30(6):440–51.

    Article  CAS  PubMed  Google Scholar 

  25. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kahroba H, Shirmohamadi M, Hejazi MS, Samadi N. The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci. 2019;239:116986.

    Article  CAS  PubMed  Google Scholar 

  27. Pillai R, Hayashi M, Zavitsanou A-M, Papagiannakopoulos TJ. NRF2: KEAPing tumors protected. Cancer Discov. 2022;12(3):625–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torrente L, DeNicola GM. Targeting NRF2 and its downstream processes: opportunities and challenges. Annu Rev Pharmacol Toxicol. 2022;62:279–300.

    Article  PubMed  Google Scholar 

  29. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2(1):1–12.

    Article  Google Scholar 

  31. Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci. 2007;104(29):12017–22.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hinchy EC, Gruszczyk AV, Willows R, Navaratnam N, Hall AR, Bates G, et al. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. J Biol Chem. 2018;293(44):17208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol cell. 2008;30(2):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  35. Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, et al. AMP-activated protein kinase and the regulation of autophagic proteolysis. Curr Biol. 2006;281(46):34870–9.

    CAS  Google Scholar 

  36. Li Y, Chen Y. AMPK and autophagy. Adv Exp Med Biol. 2019. https://doi.org/10.1007/978-981-15-0602-4_4.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.

    Article  CAS  PubMed  Google Scholar 

  39. Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 2019;26(4):690–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ippolito L, Giannoni E, Chiarugi P, Parri M. Mitochondrial redox hubs as promising targets for anticancer therapy. Front Oncol. 2020;10:256.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Rad Biol Med. 2010;49(11):1603–16.

    Article  CAS  PubMed  Google Scholar 

  42. Lei Y, Zhang D, Yu J, Dong H, Zhang J, Yang S. Targeting autophagy in cancer stem cells as an anticancer therapy. Cancer Lett. 2017;393:33–9.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Wang Z. Increased oxidative stress as a selective anticancer therapy. Oxidat Med Cell Longev. 2015;2015:1–12.

    Google Scholar 

  44. Hüser L, Novak D, Umansky V, Altevogt P, Utikal J. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targ. 2018;22(12):983–91.

    Article  Google Scholar 

  45. Ng P, Cheng W. The Dark Side of Pluripotency–Cancer Stem Cell. In: Pluripotent Stem Cells. IntechOpen; 2013.

  46. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dalerba P, Dylla SJ, Park I-K, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci. 2007;104(24):10158–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15(3):504–14.

    Article  CAS  PubMed  Google Scholar 

  49. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13(10):727–38.

    Article  CAS  PubMed  Google Scholar 

  51. Jones RJ, Matsui W. Cancer stem cells: from bench to bedside. Biol Blood Marrow Trans. 2007;13:47–52.

    Article  Google Scholar 

  52. Lin TL, Fu C, Sakamoto KM. Cancer stem cells: the root of the problem. Pediatr Res. 2007;62(3):239.

    Article  PubMed  Google Scholar 

  53. Zhu X, Chen H-H, Gao C-Y, Zhang X-X, Jiang J-X, Zhang Y, et al. Energy metabolism in cancer stem cells. World J Stem Cells. 2020;12(6):448.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18(1):1–10.

    Article  Google Scholar 

  55. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor microenvironment complexity: emerging roles in cancer therapytumor microenvironment. Cancer Res. 2012;72(10):2473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dougan M, Dougan SK. Targeting immunotherapy to the tumor microenvironment. J cell biochem. 2017;118(10):3049–54.

    Article  CAS  PubMed  Google Scholar 

  57. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sung P-J, Rama N, Imbach J, Fiore S, Ducarouge B, Neves D, et al. Cancer-associated fibroblasts produce netrin-1 to control cancer cell plasticity. Cancer Res. 2019;79(14):3651–61.

    Article  CAS  PubMed  Google Scholar 

  59. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+ GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172(4):841–56.

    Article  CAS  PubMed  Google Scholar 

  60. Huang T-X, Guan X-Y, Fu L. Therapeutic targeting of the crosstalk between cancer-associated fibroblasts and cancer stem cells. Am J Cancer Res. 2019;9(9):1889.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rao G, Wang H, Li B, Huang L, Xue D, Wang X, et al. Reciprocal interactions between tumor-associated macrophages and cd44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancerthe interaction of OPN and CD44 in colorectal cancer. Clinical Cancer Res. 2013;19(4):785–97.

    Article  CAS  Google Scholar 

  62. Doherty MR, Parvani JG, Tamagno I, Junk DJ, Bryson BL, Cheon HJ, et al. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Breast Cancer Res. 2019;21(1):1–12.

    Article  Google Scholar 

  63. Debele TA, Yu L-Y, Yang C-S, Shen Y-A, Lo C-L. pH-and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromol. 2018;19(9):3725–37.

    Article  CAS  Google Scholar 

  64. Jung N, Kwon HJ, Jung HJ. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma. Int J Oncol. 2018;52(1):241–51.

    CAS  PubMed  Google Scholar 

  65. Weinberg F, Ramnath N, Nagrath D. Reactive oxygen species in the tumor microenvironment: an overview. Cancers. 2019;11(8):1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Aboelella NS, Brandle C, Kim T, Ding Z-C, Zhou G. Oxidative stress in the tumor microenvironment and its relevance to cancer immunotherapy. Cancers. 2021;13(5):986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci. 2007;120(23):4155–66.

    Article  CAS  PubMed  Google Scholar 

  68. Salmeen A, Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid & Redox Signal. 2005;7(5–6):560–77.

    Article  CAS  Google Scholar 

  69. Leslie NR. The redox regulation of PI 3-kinase–dependent signaling. Antioxid & Redox Signal. 2006;8(9–10):1765–74.

    Article  CAS  Google Scholar 

  70. Choi S-L, Kim S-J, Lee K-T, Kim J, Mu J, Birnbaum MJ, et al. The regulation of AMP-activated protein kinase by H2O2. Biochem Biophys Res. 2001;287(1):92–7.

    Article  CAS  Google Scholar 

  71. Ojha R, Bhattacharyya S, Singh SK. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis. BioRes open access. 2015;4(1):97–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khan SU, Pathania AS, Wani A, Fatima K, Mintoo MJ, Hamza B, et al. Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. Sci Rep. 2022;12(1):1–13.

    Google Scholar 

  73. Wani A, Al Rihani SB, Sharma A, Weadick B, Govindarajan R, Khan SU, et al. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy. 2021;17(11):3813–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xie K, Tian L, Guo X, Li K, Li J, Deng X, et al. BmATG5 and BmATG6 mediate apoptosis following autophagy induced by 20-hydroxyecdysone or starvation. Autophagy. 2016;12(2):381–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Puente C, Hendrickson RC, Jiang XJ. Nutrient-regulated phosphorylation of ATG13 inhibits starvation-induced autophagy. J Biol Chem. 2016;291(11):6026–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wei Y, An Z, Zou Z, Sumpter R Jr, Su M, Zang X, et al. The stress-responsive kinases MAPKAPK2/MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife. 2015;4:0528.

    Article  Google Scholar 

  77. Rashid H-O, Yadav RK, Kim H-R, Chae H-J. ER stress: Autophagy induction, inhibition and selection. Autophagy. 2015;11(11):1956–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fang Y, Tan J, Zhang Q. Signaling pathways and mechanisms of hypoxia-induced autophagy in the animal cells. Cell Biol Int. 2015;39(8):891–8.

    Article  CAS  PubMed  Google Scholar 

  79. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43(1):67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang L, Ye X, Zhao T. The physiological roles of autophagy in the mammalian life cycle. Biol Rev. 2019;94(2):503–16.

    Article  PubMed  Google Scholar 

  81. Umanah GK, Abalde-Atristain L, Khan MR, Mitra J, Dar MA, Chang M, et al. AAA+ ATPase Thorase inhibits mTOR signaling through the disassembly of the mTOR complex 1. Nat Commun. 2022;13(1):1–18.

    Article  Google Scholar 

  82. Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol cell. 2010;40(2):310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol cell. 2009;20(7):1981–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy OJ. A double negative feedback loop between mTORC1 and AMPK kinases guarantees precise autophagy induction upon cellular stress. Int J Mol Sci. 2019;20(22):5543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol cel. 2009;20(7):1992–2003.

    Article  CAS  Google Scholar 

  87. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, et al. The WD40 repeat PtdIns (3) P-binding protein EPG-6 regulates progression of omegasomes to autophagosomes. Dev Cell. 2011;21(2):343–57.

    Article  CAS  PubMed  Google Scholar 

  89. Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5–16L1. Mol Cell. 2014;55(2):238–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 2007;130(1):165–78.

    Article  CAS  PubMed  Google Scholar 

  91. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.

    Article  CAS  PubMed  Google Scholar 

  92. Chang C, Jensen LE, Hurley JH. Autophagosome biogenesis comes out of the black box. Nat Cell Biol. 2021;23(5):450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. El Hout M, Cosialls E, Mehrpour M, Hamaï A. Crosstalk between autophagy and metabolic regulation of cancer stem cells. Mol Cancer. 2020;19(1):1–17.

    Google Scholar 

  94. Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive oxygen species-mediated autophagy defines the fate of cancer stem cells. Antioxid & Redox Signal. 2018;28(11):1066–79.

    Article  CAS  Google Scholar 

  95. Ding W-X, Yin X-M. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12(10):685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Janku F. Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol. 2014;6(2):43–51.

    Article  PubMed  PubMed Central  Google Scholar 

  98. El-Osta H, Hong D, Wheler J, Fu S, Naing A, Falchook G, et al. Outcomes of research biopsies in phase I clinical trials: the MD anderson cancer center experience. The Oncol. 2011;16(9):1292–8.

    Article  Google Scholar 

  99. Anderson K, Lutz C, Van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356–61.

    Article  CAS  PubMed  Google Scholar 

  100. Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1):1–9.

    Article  Google Scholar 

  101. Mintoo M, Khan S, Wani A, Malik S, Bhurta D, Bharate S, et al. A rohitukine derivative IIIM-290 induces p53 dependent mitochondrial apoptosis in acute lymphoblastic leukemia cells. Mol Carcinog. 2021;60(10):671–83.

    Article  CAS  PubMed  Google Scholar 

  102. Khan SU, Fatima K, Malik F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis. 2022;39(5):715–26.

    Article  PubMed  Google Scholar 

  103. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488(7412):527–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao Z, Liu H, Shi Y, Yin L, Zhu Y, Liu R. Identification of cancer stem cell molecular markers and effects of hsa-miR-21–3p on stemness in esophageal squamous cell carcinoma. Cancers. 2019;11(4):518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer stem cell metabolism and potential therapeutic targets. Front Oncol. 2018;8:203.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yang M, Liu P, Huang P. Cancer stem cells, metabolism, and therapeutic significance. Tumor Biol. 2016;37(5):5735–42.

    Article  CAS  Google Scholar 

  108. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34.

    Article  CAS  PubMed  Google Scholar 

  109. Valle S, Alcalá S, Martin-Hijano L, Cabezas-Sáinz P, Navarro D, Muñoz ER, et al. Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nat Commun. 2020;11(1):1–19.

    Article  Google Scholar 

  110. Tian H, Zhang B, Li L, Wang G, Li H, Zheng J. Manipulation of mitochondrial plasticity changes the metabolic competition between “Foe” and “Friend” during tumor malignant transformation. Front Oncol. 2020;10:1692.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15(1):1–10.

    Article  Google Scholar 

  112. Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11(5):596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rahman M, Deleyrolle L, Vedam-Mai V, Azari H, Abd-El-Barr M, Reynolds BA. The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery. 2011;68(2):531–45.

    Article  PubMed  Google Scholar 

  114. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. 2001;414(6859):105–11.

    CAS  Google Scholar 

  115. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. 2009;324(5930):1029–33.

    CAS  Google Scholar 

  116. Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005;11(3):1154–9.

    Article  CAS  PubMed  Google Scholar 

  117. Moitra K, Lou H, Dean M. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther. 2011;89(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  118. Serafino A, Zonfrillo M, Andreola F, Psaila R, Mercuri L, Moroni N, et al. CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targ. 2011;11(5):572–85.

    Article  CAS  Google Scholar 

  119. Tamada M, Nagano O, Tateyama S, Ohmura M, Yae T, Ishimoto T, et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells. Cancer Res. 2012;72(6):1438–48.

    Article  CAS  PubMed  Google Scholar 

  120. Kuramoto K, Yamamoto M, Suzuki S, Sanomachi T, Togashi K, Seino S, et al. Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. Genes. 2020;287(10):2023–36.

    CAS  Google Scholar 

  121. Yasuda T, Ishimoto T, Baba H. Conflicting metabolic alterations in cancer stem cells and regulation by the stromal niche. Regen Ther. 2021;17:8–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sancho P, Burgos-Ramos E, Tavera A, Kheir TB, Jagust P, Schoenhals M, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabol. 2015;22(4):590–605.

    Article  CAS  Google Scholar 

  123. De Francesco EM, Ózsvári B, Sotgia F, Lisanti MP. Dodecyl-TPP targets mitochondria and potently eradicates cancer stem cells (CSCs): synergy with FDA-approved drugs and natural compounds (vitamin C and berberine). Front Oncol. 2019;9:615.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 2011;9(1):1–5.

    Article  Google Scholar 

  125. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6(7):4569.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chu D, Yao D, Zhuang Y, Hong Y, Zhu X, Fang Z, et al. Azithromycin enhances the favorable results of paclitaxel and cisplatin in patients with advanced non-small cell lung cancer. Genet Mol Res. 2014;13(2):2796–805.

    Article  CAS  PubMed  Google Scholar 

  127. Andrzejewski S, Gravel S-P, Pollak M, St-Pierre J. Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metabol. 2014;2(1):1–14.

    Article  Google Scholar 

  128. Mayer M, Klotz L, Venkateswaran V. Metformin and prostate cancer stem cells: a novel therapeutic target. Prostate Cancer and Prostatic Dis. 2015;18(4):303–9.

    Article  CAS  Google Scholar 

  129. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2016;1863(12):2977–92.

    Article  CAS  Google Scholar 

  130. 贾晓晖. Hypoxia-inducible Factor-1 (HIF-1) in Pancreatic Cancer Cell Aggressiveness and Therapeutic Resistance and the Potential Role for Pancreatic Endocrine Cells in Islet Transplantation. 2014.

  131. Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Front Oncol. 2014;4:262.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Singh SS, Vats S, Chia AY-Q, Tan TZ, Deng S, Ong MS, et al. Dual role of autophagy in hallmarks of cancer. Oncogene. 2018;37(9):1142–58.

    Article  CAS  PubMed  Google Scholar 

  133. Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun. 2014;5(1):1–15.

    Article  Google Scholar 

  134. Borah A, Raveendran S, Rochani A, Maekawa T, Kumar D. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis. 2015;4(11):e177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoo YD, Kwon YT. Molecular mechanisms controlling asymmetric and symmetric self-renewal of cancer stem cells. J Analyt Sci Technol. 2015;6(1):1–6.

    Google Scholar 

  136. Mehta P, Novak C, Raghavan S, Ward M, Mehta G. Self-renewal and CSCs in vitro enrichment: growth as floating spheres. Cancer Stem Cells: Springer; 2018. p. 61–75.

    Google Scholar 

  137. Singh AK, Arya RK, Maheshwari S, Singh A, Meena S, Pandey P, et al. Tumor heterogeneity and cancer stem cell paradigm: updates in concept, controversies and clinical relevance. Int J Cancer. 2015;136(9):1991–2000.

    Article  CAS  PubMed  Google Scholar 

  138. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11(1):1–16.

    Google Scholar 

  139. Brunel A, Bégaud G, Auger C, Durand S, Battu S, Bessette B, et al. Autophagy and extracellular vesicles, connected to rabGTPase family, support aggressiveness in cancer stem cells. Cells. 2021;10(6):1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Clarke AJ, Simon AK. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol. 2019;19(3):170–83.

    Article  CAS  PubMed  Google Scholar 

  141. Morishita H, Mizushima N. Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 2019;35(1):453–75.

    Article  CAS  PubMed  Google Scholar 

  142. Cho YH, Han KM, Kim D, Lee J, Lee SH, Choi KW, et al. Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells. 2014;32(2):424–35.

    Article  CAS  PubMed  Google Scholar 

  143. Abd El-Aziz YS, Gillson J, Jansson PJ, Sahni S. A promising target for triple negative breast cancers. Autophagy. 2022;175:106006.

    CAS  Google Scholar 

  144. McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Libra M, et al. Targeting breast cancer initiating cells: advances in breast cancer research and therapy. Adv Biol Regul. 2014;56:81–107.

    Article  CAS  PubMed  Google Scholar 

  145. Wolf J, Dewi DL, Fredebohm J, Müller-Decker K, Flechtenmacher C, Hoheisel JD, et al. A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res. 2013;15(6):1–13.

    Article  Google Scholar 

  146. Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Breast Cancer Res. 2013;32(18):2261–72.

    CAS  Google Scholar 

  147. Jang K. Exploring Mechanisms Linking Signal Transduction and Cancer Stem Cell Expansion: University of Miami; 2017.

  148. Antonelli M, Strappazzon F, Arisi I, Brandi R, D’Onofrio M, Sambucci M, et al. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy. Oncotarget. 2017;8(13):21692.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Maycotte P, Gearheart CM, Barnard R, Aryal S, Mulcahy Levy JM, Fosmire SP, et al. STAT3-mediated autophagy dependence identifies subtypes of breast cancer where autophagy inhibition can be efficaciousautophagy and STAT3 control breast cancer survival. Cancer res. 2014;74(9):2579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Qin J-J, Yan L, Zhang J, Zhang W-D. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp & Clin Cancer Res. 2019;38(1):1–16.

    Article  Google Scholar 

  151. Ortiz-Montero P, Londoño-Vallejo A, Vernot J-P. Senescence-associated IL-6 and IL-8 cytokines induce a self-and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun Signal. 2017;15(1):1–18.

    Article  Google Scholar 

  152. Yin P, Wang W, Gao J, Bai Y, Wang Z, Na L, et al. Fzd2 contributes to breast cancer cell mesenchymal-like stemness and drug resistance. Oncol Res. 2020;28(3):273.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kimmelman AC, White E. Autophagy and tumor metabolism. Cell Metab. 2017;25(5):1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhu H, Wang D, Zhang L, Xie X, Wu Y, Liu Y, et al. Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep. 2014;32(3):935–42.

    Article  CAS  PubMed  Google Scholar 

  156. Qureshi-Baig K, Kuhn D, Viry E, Pozdeev VI, Schmitz M, Rodriguez F, et al. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy. 2020;16(8):1436–52.

    Article  CAS  PubMed  Google Scholar 

  157. Park SJ, Kim JG, Kim ND, Yang K, Shim JW, Heo KJOL. Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 2016;11(3):1895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. O’Brien CA, Kreso A, Jamieson CH. Cancer Stem Cells and Self-renewalCancer Stem Cells and Self-renewal. Clin Cancer Res. 2010;16(12):3113–20.

    Article  CAS  PubMed  Google Scholar 

  160. Liu C, Liu L, Chen X, Cheng J, Zhang H, Zhang C, et al. LSD1 Stimulates cancer-associated fibroblasts to drive notch3-dependent self-renewal of liver cancer stem–like CellsLSD1 regulates liver CSC self-renewal via notch3 signaling. Cancer Res. 2018;78(4):938–49.

    Article  CAS  PubMed  Google Scholar 

  161. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Morrison SJ, Spradling ACJC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mazure NM, Pouysségur J. Hypoxia-induced autophagy: cell death or cell survival? Current Opin Cell Biol. 2010;22(2):177–80.

    Article  CAS  Google Scholar 

  164. Song Y-j, Zhang S-s, Guo X-l, Sun K, Han Z-p, Li R, et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 2013;339(1):70–81. https://doi.org/10.1016/j.canlet.2013.07.021.

    Article  CAS  PubMed  Google Scholar 

  165. Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, et al. Targeting hypoxic tumor microenvironment in pancreatic cancer. 2021;14(1):1–25.

    Google Scholar 

  166. Held NM, Houtkooper RHJB. Mitochondrial quality control pathways as determinants of metabolic health. BioEssays. 2015;37(8):867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Peixoto J, Lima J. Metabolic traits of cancer stem cells. Dis Models Mech. 2018;11(8):dmm033464.

    Article  Google Scholar 

  168. Menendez J, Joven J, Cufí S, Corominas-Faja B, Oliveras-Ferraros C, Cuyàs E, et al. The Warburg effect version 20: metabolic reprogramming of cancer stem cells. Cell Cycle. 2013;12(8):1166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shen Y-A, Wang C-Y, Hsieh Y-T, Chen Y-J, Wei Y-H. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 2015;14(1):86–98.

    Article  PubMed  Google Scholar 

  170. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24(7):1036–46.

    Article  CAS  PubMed  Google Scholar 

  171. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends in cell biol. 2014;24(12):761–70.

    Article  CAS  Google Scholar 

  173. Twig G, Shirihai OS. The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal. 2011;14(10):1939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii H, Kang R, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4(12):e966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Boya P, Codogno P, Rodriguez-Muela NJD. Autophagy in stem cells: repair, remodelling and metabolic reprogramming. Development. 2018;145(4):146506.

    Article  Google Scholar 

  176. Carnero A, Lleonart M. The hypoxic microenvironment: A determinant of cancer stem cell evolution. Inside the Cell. 2016;1(2):96–105.

    Article  Google Scholar 

  177. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res. 2001;61(18):6669–73.

    CAS  PubMed  Google Scholar 

  178. Roscigno G, Puoti I, Giordano I, Donnarumma E, Russo V, Affinito A, et al. MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer. Oncotarget. 2017;8(12):19507.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Naik PP, Birbrair A, Bhutia SKJC, Sciences ML. Mitophagy-driven metabolic switch reprograms stem cell fate. Cel Mol Life Sci. 2019;76(1):27–43.

    Article  CAS  Google Scholar 

  180. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci. 2011;108(38):16062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Reitzer LJ, Wice BM, Kennell DJ. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. Proc Natl Acad Sci. 1979;254(8):2669–76.

    CAS  Google Scholar 

  182. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Med. 2011;17(11):1498–503.

    Article  CAS  PubMed  Google Scholar 

  183. Vazquez Rodriguez G, Abrahamsson A, Jensen LDE, Dabrosin C. Adipocytes promote early steps of breast cancer cell dissemination via interleukin-8. Front Immunol. 2018;9:1767.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Al-Khalaf HH, Al-Harbi B, Al-Sayed A, Arafah M, Tulbah A, Jarman A, et al. Interleukin-8 activates breast cancer-associated adipocytes and promotes their angiogenesis-and tumorigenesis-promoting effects. Mol Cell Biol. 2019;39(2):e00332-e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Razmkhah M, Jaberipour M, Hosseini A, Safaei A, Khalatbari B, Ghaderi A. Expression profile of IL-8 and growth factors in breast cancer cells and adipose-derived stem cells (ASCs) isolated from breast carcinoma. Cellular Immunol. 2010;265(1):80–5.

    Article  CAS  Google Scholar 

  186. Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS ONE. 2016;11(1): e0147717.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Choi S, Yoo YJ, Kim H, Lee H, Chung H, Nam M-H, et al. Clinical and biochemical relevance of monounsaturated fatty acid metabolism targeting strategy for cancer stem cell elimination in colon cancer. Biochem Biophys Res Commun. 2019;519(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  188. Wang C, Ma J, Zhang N, Yang Q, Jin Y, Wang Y. The acetyl-CoA carboxylase enzyme: a target for cancer therapy? Expert Rev Anticancer Ther. 2015;15(6):667–76.

    Article  PubMed  Google Scholar 

  189. Lucenay KS, Doostan I, Karakas C, Bui T, Ding Z, Mills GB, et al. Cyclin E associates with the lipogenic enzyme ATP-citrate lyase to enable malignant growth of breast cancer cells. Cancer Res. 2016;76(8):2406–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Tyanova S, Albrechtsen R, Kronqvist P, Cox J, Mann M, Geiger T. Proteomic maps of breast cancer subtypes. Nature commun. 2016;7(1):1–11.

    Article  Google Scholar 

  192. Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård GF, et al. Metabolic characterization of triple negative breast cancer. BMC Cancer. 2014;14(1):1–12.

    Article  Google Scholar 

  193. El Ansari R, Craze ML, Miligy I, Diez-Rodriguez M, Nolan CC, Ellis IO, et al. The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours. Breast Cancer Res. 2018;20(1):1–17.

    Article  Google Scholar 

  194. El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA, Green AR. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 2018;72(2):183–90.

    Article  PubMed  Google Scholar 

  195. Sun X, Wang M, Wang M, Yu X, Guo J, Sun T, et al. Metabolic reprogramming in triple-negative breast cancer. Front oncol. 2020;10:428.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wang Z, Jiang Q, Dong C. Metabolic reprogramming in triple-negative breast cancer. Front onco. 2020;17(1):44.

    Google Scholar 

  197. Gong Y, Ji P, Yang Y-S, Xie S, Yu T-J, Xiao Y, et al. Metabolic-pathway-based subtyping of triple-negative breast cancer reveals potential therapeutic targets. Cell metabol. 2021;33(1):51–64.

    Article  CAS  Google Scholar 

  198. Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76(8):2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee J, Shin JE, Lee B, Kim H, Jeon Y, Ahn SH, et al. The stem cell marker Prom1 promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proc Natl Acad Sci. 2020;117(27):15955–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li X, Wu JB, Li Q, Shigemura K, Chung LW, Huang W-C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7(11):12869.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Visweswaran M, Arfuso F, Warrier S, Dharmarajan A. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Front Oncol. 2020;38(1):6–14.

    CAS  Google Scholar 

  202. Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget. 2014;5(18):8306.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Zhang T, Xie J, Arai S, Wang L, Shi X, Shi N, et al. The efficacy and safety of anti-PD-1/PD-L1 antibodies for treatment of advanced or refractory cancers: a meta-analysis. 2016;7(45):73068.

  204. Cole AJ, Fayomi AP, Anyaeche VI, Bai S, Buckanovich RJ. An evolving paradigm of cancer stem cell hierarchies: therapeutic implications. Theranostics. 2020;10(7):3083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, et al. Repurposing Drugs in Oncology (ReDO)—chloroquine and hydroxychloroquine as anti-cancer agents. 2017;11.

  206. Rahman MA, Saha SK, Rahman MS, Uddin MJ, Uddin MS, Pang M-G, et al. Molecular insights into therapeutic potential of autophagy modulation by natural products for cancer stem cells. Front Cell Dev Biol. 2020;8:283.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Rath S, Liebl J, Fürst R, Vollmar AM, Zahler S. Regulation of endothelial signaling and migration by v-ATPase. Angiogenesis. 2014;17(3):587–601.

    Article  CAS  PubMed  Google Scholar 

  208. Garza-Lombó C, Pappa A, Panayiotidis MI, Franco R. Redox homeostasis, oxidative stress and mitophagy. Circul Res. 2020;51:105–17.

    Google Scholar 

  209. Kubli DA, Gustafsson ÅB. Mitochondria and mitophagy: the yin and yang of cell death control. Circul Res. 2012;111(9):1208–21.

    Article  CAS  Google Scholar 

  210. Ngabire D, Kim G-D. Autophagy and inflammatory response in the tumor microenvironment. Int J Mol Sci. 2017;18(9):2016.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Yang X, Yu D-D, Yan F, Jing Y-Y, Han Z-P, Sun K, et al. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci. 2015;5(1):1–11.

    Article  Google Scholar 

  212. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 2013;19(7):428–46.

    Article  CAS  PubMed  Google Scholar 

  213. Mowers EE, Sharifi MN, Macleod KF. Functions of autophagy in the tumor microenvironment and cancer metastasis. 2018;285(10):1751–66.

    CAS  Google Scholar 

  214. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, et al. Microenvironmental autophagy promotes tumour growth. Nature. 2017;541(7637):417–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature. 2017;543(7644):205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Pietrocola F, Pol J, Kroemer G. Fasting improves anticancer immunosurveillance via autophagy induction in malignant cells. Cell Cycle. 2016;15(24):3327–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Turcotte S, Giaccia AJ. Targeting cancer cells through autophagy for anticancer therapy. Curr Opin Cell Biol. 2010;22(2):246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Janku F, McConkey DJ, Hong DS, Kurzrock R. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol. 2011;8(9):528–39.

    Article  CAS  PubMed  Google Scholar 

  219. Hashimoto D, Bläuer M, Hirota M, Ikonen NH, Sand, Laukkarinen J. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur J Cancer. 2014;50(7):1382–90.

    Article  CAS  PubMed  Google Scholar 

  220. Heddleston J, Li Z, Lathia J, Bao S, Hjelmeland A, Rich J. Hypoxia inducible factors in cancer stem cells. Br J Cancer. 2010;102(5):789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek IJCmm. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. 2016;16(6):533–44.

  222. Russell RC, Yuan H-X, Guan K-L. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57.

    Article  CAS  PubMed  Google Scholar 

  223. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema K-J, et al. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14(8):1435–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Xu R, Ji Z, Xu C, Zhu JJM. The clinical value of using chloroquine or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. 2018;97(46).

  225. Vega-Rubín-de-Celis S, Zou Z, Fernández ÁF, Ci B, Kim M, Xiao G, et al. Increased autophagy blocks HER2-mediated breast tumorigenesis. 2018;115(16):4176–81.

  226. Muntean AG, Hess JL. Epigenetic dysregulation in cancer. Am J Pathol. 2009;175(4):1353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harbor perspect biol. 2016;8(4): a019521.

    Article  Google Scholar 

  228. Casalino L, Verde P. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis. Genes. 2020;11(8):922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Temian DC, Pop LA, Irimie AI, Berindan-Neagoe IJ. The epigenetics of triple-negative and basal-like breast cancer: current knowledge. J Breast Cancer. 2018;21(3):233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Berger SL, Sassone-Corsi P. Metabolic signaling to chromatin. Cold Spring Harbor perspect biol. 2016;8(11): a019463.

    Article  Google Scholar 

  231. Aldana-Masangkay GI, Sakamoto KMJJoB, Biotechnology. The role of HDAC6 in cancer. 2010;2011.

  232. Rao M, Chinnasamy N, Hong JA, Zhang Y, Zhang M, Xi S, et al. Inhibition of histone lysine methylation enhances cancer–testis antigen expression in lung cancer cells: Implications for adoptive immunotherapy of cancer. 2011;71(12):4192–204.

  233. Mandhair HK, Novak U, Radpour R. Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World Journal Stem Cells. 2021;13(6):542.

    Article  Google Scholar 

  234. Liao Y-P, Chen L-Y, Huang R-L, Su P-H, Chan MW, Chang C-C, et al. Hypomethylation signature of tumor-initiating cells predicts poor prognosis of ovarian cancer patients. Human mol genet. 2014;23(7):1894–906.

    Article  CAS  Google Scholar 

  235. Mandhair HK, Arambasic M, Novak U, Radpour R. WJSC. 2020.

  236. Zhu J, Huang G, Hua X, Li Y, Yan H, Che X, et al. CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells. 2019;38(17):3301–15.

  237. Kim TW, Lee SY, Kim M, Cheon C, Ko S-GJCd, disease. Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. 2018;9(9):1–14.

  238. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Hanes MR, Murphy PJ, et al. HDAC6 differentially regulates autophagy in stem-like versus differentiated cancer cells. 2019;15(4):686–706.

  239. Yang W, Liu Y, Gao R, Yu H, Sun TJCl. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. 2018;415:164–76.

  240. Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016;17(5):284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Kim J-A, Yeom YI. Metabolic signaling to epigenetic alterations in cancer. Biomol ther. 2018;26(1):69.

    Article  CAS  Google Scholar 

  242. Stellingwerff T, LeBlanc PJ, Hollidge MG, Heigenhauser GJ, Spriet LL. Metabolism Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. Am J Physiol-Endocrinol Metabol. 2006;290(6):E1180–90.

    Article  CAS  Google Scholar 

  243. Ullmann P, Qureshi-Baig K, Rodriguez F, Ginolhac A, Nonnenmacher Y, Ternes D, et al. Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production. Oncotarget. 2016;7(40):65454.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Sánchez-García FJ. Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance Frontiers in immunology. Front Immunol. 2016;7:52.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Dhup S, Kumar Dadhich R, Ettore Porporato P, Sonveaux P. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 2012;18(10):1319–30.

    Article  CAS  PubMed  Google Scholar 

  246. Lardner A. The effects of extracellular pH on immune function. J leukocyte biology. 2001;69(4):522–30.

    Article  CAS  Google Scholar 

  247. Dayem AA, Choi H-Y, Kim J-H, Cho S-G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers. 2010;2(2):859–84.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart M, editors. Insights into new mechanisms and models of cancer stem cell multidrug resistance.In: Seminars in cancer biology. Amsterdam: Elsevier. 2020

  249. Chandel NS. NADPH—the forgotten reducing equivalent. Cold Spring Harb Perspect Biol. 2021;13(6):a040550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Fang Y-Z, Yang S, Wu GJN. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872–9.

    Article  CAS  PubMed  Google Scholar 

  251. Ju H-Q, Lin J-F, Tian T, Xie D, Xu R-H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther. 2020;5(1):1–12.

    Article  Google Scholar 

  252. Kozovska Z, Patsalias A, Bajzik V, Durinikova E, Demkova L, Jargasova S, et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer. 2018;18(1):1–11.

    Article  Google Scholar 

  253. Xu M, Luo JJC. Alcohol and cancer stem cells. Cancers. 2017;9(11):158.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Pastò A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M,Guzzo G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget. 2014;5(12):4305.

    Article  PubMed  PubMed Central  Google Scholar 

  255. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;27(13):1447–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Pitolli C, Wang Y, Candi E, Shi Y, Melino G, Amelio IJC. p53-mediated tumor suppression: DNA-damage response and alternative mechanisms. Cancers. 2019;11(12):1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hart PC, Mao M, De Abreu ALP, Ansenberger-Fricano K, Ekoue DN, Ganini D, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6(1):1–14.

    Article  Google Scholar 

  259. Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, et al. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget. 2015;6(2):651.

    Article  PubMed  Google Scholar 

  260. Zhou J, Ng S-B, Chng W-J. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol. 2013;45(5):973–8.

    Article  CAS  PubMed  Google Scholar 

  261. Ma W, Ma J, Xu J, Qiao C, Branscum A, Cardenas A, et al. Lin28 regulates BMP4 and functions with Oct4 to affect ovarian tumor microenvironment. Cell Cycle. 2013;12(1):88–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Chen C, Bai L, Cao F, Wang S, He H, Song M, et al. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis. Oncogene. 2019;38(23):4527–39.

    Article  CAS  PubMed  Google Scholar 

  263. Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9.

    Article  PubMed  Google Scholar 

  264. Rundlöf A-K, Arnér ES. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype growth and signaling events. Antioxid Redox Signal. 2004;6(1):41–52.

    Article  PubMed  Google Scholar 

  265. Gencheva R, Arnér ES. Thioredoxin reductase inhibition for cancer therapy. Annu Rev Pharmacol Toxicol. 2022;62:177–96.

    Article  PubMed  Google Scholar 

  266. Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res. 2010;12(3):1–15.

    Article  Google Scholar 

  267. Casagrande N, DePaoli M, Celegato M, Borghese C, Mongiat M, Colombatti A, et al. Preclinical evaluation of a new liposomal formulation of cisplatin, lipoplatin, to treat cisplatin-resistant cervical cancer. Gynecol Oncol. 2013;131(3):744–52.

    Article  CAS  PubMed  Google Scholar 

  268. He C, Danes JM, Hart PC, Zhu Y, Huang Y, de Abreu AL, et al. SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proc Natl Acad Sci. 2019;116(47):23534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5(7):e1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23(3):316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Nagy P, Sándor GO, Juhász G. Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Sci Rep. 2018;8(1):1–9.

    Article  Google Scholar 

  272. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37–42.

    Article  PubMed  Google Scholar 

  273. Peng Q, Qin J, Zhang Y, Cheng X, Wang X, Lu W, et al. Autophagy maintains the stemness of ovarian cancer stem cells by FOXA2. J Exp Clin Cancer Res. 2017;36(1):1–12.

    Article  Google Scholar 

  274. Babaei G, Aziz SG-G, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.

    Article  CAS  PubMed  Google Scholar 

  275. Lunt SJ, Chaudary N, Hill RP. metastasis e The tumor microenvironment and metastatic disease. Clin Exp Metas. 2009;26(1):19–34.

    Article  Google Scholar 

  276. Goubran HA, Kotb RR, Stakiw J, Emara ME, Burnouf T. metastasis Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer growth and metastasis. 2014;7:11285.

    Article  Google Scholar 

  277. Wood SL, Pernemalm M, Crosbie Whetton PAAD. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 2014;40(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  278. Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E, et al. Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer. 2008;59(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  279. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  281. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  282. Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G, editors. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Seminars in Cancer Biology; Elsevier. 2018.

  283. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Can Res. 2013;73(3):1128–41.

    Article  CAS  Google Scholar 

  284. Kobune M, Iyama S, Kikuchi S, Horiguchi H, Sato T, Murase K, et al. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms. Blood cancer Jornal. 2012;2(9):e87.

    Article  CAS  Google Scholar 

  285. Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C. Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle. 2012;11(7):1282–90.

    Article  CAS  PubMed  Google Scholar 

  286. Ye J, Wu D, Wu P, Chen Z, Huang J. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol. 2014;35(5):3945–51.

    Article  CAS  Google Scholar 

  287. Varas-Godoy M, Rice G, Illanes SE. The crosstalk between ovarian cancer stem cell niche and the tumor microenvironment. Stem Cells Int. 2017. https://doi.org/10.1155/2017/5263974.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Movahed ZG, Yarani R, Mohammadi P, Mansouri KJB. Pharmacotherapy Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: Pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed Pharmacother. 2021;139: 111643.

    Article  CAS  PubMed  Google Scholar 

  289. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478(7369):399–403.

    Article  CAS  PubMed  Google Scholar 

  290. Fitzgerald G, Soro-Arnaiz I, De Bock K. The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer. Fron Cell Dev Biol. 2018;6:100.

    Article  Google Scholar 

  291. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824–8.

    Article  CAS  PubMed  Google Scholar 

  292. Krishnamurthy S, Warner KA, Dong Z, Imai A, Nör C, Ward BB, et al. Endothelial interleukin-6 defines the tumorigenic potential of primary human cancer stem cells. Stem cells. 2014;32(11):2845–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would also like to thank –Kaneez Fatima and Shariqa Aisha (CSIR-IIIM, India) for critically reading the manuscript, and our colleagues particularly Dr. Reyaz Hassan (University of Kashmir, India), Dr. Abubakar Wani (St. Jude Children's Research Hospital, US) for their fruitful discussions.  CSIR for providing publication approval-Institutional publication ID No. CSIR-IIIM/IPR/00475.

Funding

Funding for FM laboratory was provided by the Council of Scientific and Industrial Research (CSIR) India fellowship, a grant from the Department of Biotechnology Ministry of Science and Technology (DBT) (BT/IN/Swiss/48/FM/2018–19). CSIR-SRF budget head for providing fellowship to SK, SR is the recipient of DBT-Ramalingaswami, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

FM supervised the work; SK conceived the idea; SK designed the work; SK, SR, and PS wrote the manuscript; SK, and FM edited the manuscript; SR prepared Fig. 1 and SK prepared Figs. 2 and 3; FM and SK read and approved the final manuscript.

Fig. 2
figure 2

A model of hypoxia and autophagy induction maintains cancer stem cell survival. Cancer and cancer stem cells under hypoxia adaptively activate HIF-1 alpha-mediated autophagy that consequently supports their survival

2,

Fig. 3
figure 3

Cancer stem cells sustain mitochondrial health and activity. Cancer stem cells under hypoxia cause metabolic reprogramming and maintain the survival and energetics of cells by activating mitophagy of damaged or excessive mitochondria. Moreover, CSCs activate the antioxidant machinery to remove accumulated genotoxic mitochondria ROS in the cells

3.

Corresponding author

Correspondence to Fayaz Malik.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Rayees, S., Sharma, P. et al. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 23, 1405–1423 (2023). https://doi.org/10.1007/s10238-022-00955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00955-5

Keywords

Navigation