Skip to main content

Advertisement

Log in

Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Despite recent advancements in the diagnosis and treatment of breast cancer (BC), patient outcomes in terms of survival, recurrence, and disease progression remain suboptimal. A significant factor contributing to these challenges is the cellular heterogeneity within BC, particularly the presence of breast cancer stem cells (BCSCs). These cells are thought to serve as the clonogenic nexus for new tumor growth, owing to their hierarchical organization within the tumor. This descriptive review focuses on the evolving strategies to target BCSCs, which have become a pivotal aspect of therapeutic development. We explore a variety of approaches, including targeting specific tumor surface markers (CD133 and CD44), transporters, heat shock proteins, and critical signaling pathways like Notch, Akt, Hedgehog, KLF4, and Wnt/β-catenin. Additionally, we discuss the modulation of the tumor microenvironment through the CXCR-12/CXCR4 axis, manipulation of pH levels, and targeting hypoxia-inducible factors, vascular endothelial growth factor, and CXCR1/2 receptors. Further, this review focuses on the roles of microRNA expression, strategies to induce apoptosis and differentiation in BCSCs, dietary interventions, dendritic cell vaccination, oncolytic viruses, nanotechnology, immunotherapy, and gene therapy. We particularly focused on studies reporting identification of BCSCs, their unique properties and the efficacy of various therapeutic modalities in targeting these cells. By dissecting these approaches, we aim to provide insights into the complex landscape of BC treatment and the potential pathways for improving patient outcomes through targeted BCSC therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable for this review.

References

  1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Organization, W.H. Preventing Cancer. 2020 [cited 2020 18-11-2020]; Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019.

  3. Zhou J, et al. Stem cells and cellular origins of breast cancer: updates in the rationale, controversies, and therapeutic implications. Front Oncol. 2019;9:820–820.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elbaiomy MA, et al. Clinical impact of breast cancer stem cells in metastatic breast cancer patients. J Oncol. 2020;2020:2561726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bianchini G, et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tudoran OM, Balacescu O, Berindan-Neagoe I. Breast cancer stem-like cells: clinical implications and therapeutic strategies. Clujul Medical. 2016;89(2):193.

    PubMed  PubMed Central  Google Scholar 

  8. Dragu DL, et al. Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells. 2015;7(9):1185.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shipitsin M, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.

    Article  CAS  PubMed  Google Scholar 

  11. Kai K, et al. Breast cancer stem cells. Breast Cancer. 2010;17(2):80–5.

    Article  PubMed  Google Scholar 

  12. Ma X, et al. Modulation of drug-resistant membrane and apoptosis proteins of breast cancer stem cells by targeting berberine liposomes. Biomaterials. 2013;34(18):4452–65.

    Article  CAS  PubMed  Google Scholar 

  13. Tam WL, et al. Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell. 2013;24(3):347–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh JK, et al. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013;15(4):210.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gangopadhyay S, et al. Breast cancer stem cells: a novel therapeutic target. Clin Breast Cancer. 2013;13(1):7–15.

    Article  CAS  PubMed  Google Scholar 

  16. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. Clin Transl Med. 2018;7(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vikram R, et al. Tumorigenic and metastatic role of CD44(-/low)/CD24(-/low) cells in luminal breast cancer. Cancers. 2020;12(5):1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen K, Huang Y-H, Chen J-L. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin. 2013;34(6):732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muntimadugu E, et al. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces. 2016;143:532–46.

    Article  CAS  PubMed  Google Scholar 

  20. Daquan Chen GW, Song W, Zhang Q. Novel CD44 receptor targeting multifunctional “nano-eggs” based on double pH-sensitive nanoparticles for co-delivery of curcumin and paclitaxel to cancer cells and cancer stem cells. J Nanopart Res. 2015;17:10.

    Google Scholar 

  21. Najjar MK, Manore SG, Regua AT, Lo HW. Antibody-drug conjugates for the treatment of HER2-positive breast cancer. Genes (Basel). 2022;13:2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luksik AS, Yazigi E, Shah P, Jackson CM. CAR T cell therapy in glioblastoma: overcoming challenges related to antigen expression. Cancers (Basel). 2023;15:1414.

    Article  CAS  PubMed  Google Scholar 

  23. Yanze Sun XY, Wang X, et al. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B. 2023;13:3583–97.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20(5):793–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yue-Li Sun AP, Kumar P, Chen Z-S. Role of ABC transporters in cancer chemotherapy. Chin J Cancer. 2012;31(2):51.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chuthapisith S, et al. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg Oncol. 2010;19(1):27–32.

    Article  PubMed  Google Scholar 

  27. Shivhare S, Das A. Cell density modulates chemoresistance in breast cancer cells through differential expression of ABC transporters. Mol Biol Rep. 2023;50(1):215–25.

    Article  CAS  PubMed  Google Scholar 

  28. Cui J, et al. Targeting ABCA12-controlled ceramide homeostasis inhibits breast cancer stem cell function and chemoresistance. Sci Adv. 2023;9(48):1891.

    Article  Google Scholar 

  29. Wu CP, Ohnuma S, Ambudkar SV. Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):609–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10(2):86–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao L. NOTCH mutations: multiple faces in human malignancies. Cancer Prev Res (Philadelphia, Pa). 2015;8:259–61.

    Article  CAS  Google Scholar 

  32. Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther. 2014;141(2):140–9.

    Article  CAS  PubMed  Google Scholar 

  33. Aithal MG, Rajeswari N. Role of Notch signalling pathway in cancer and its association with DNA methylation. J Genet. 2013;92(3):667–75.

    Article  CAS  PubMed  Google Scholar 

  34. Harrison H, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Can Res. 2010;70(2):709–18.

    Article  CAS  Google Scholar 

  35. Hermawan A, et al. Bioinformatics and in vitro studies reveal the importance of p53, PPARG and notch signaling pathway in inhibition of breast cancer stem cells by hesperetin. Adv Pharm Bull. 2021;11(2):351.

    CAS  PubMed  Google Scholar 

  36. Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and breast cancer: Where are we now? Int J Mol Sci. 2022;23(5):2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossini M, Martini F, Torreggiani E, Fortini F, Aquila G, Sega FV, Patergnani S, Pinton P, Maniscalco P, Cavallesco G, Rizzo P. Metformin induces apoptosis and inhibits notch1 in malignant pleural mesothelioma cells. Front Cell Dev Biol. 2021;8:534499.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chia YH, Ma CX. Hedgehog pathway inhibitors: potential applications in breast cancer. Curr Breast Cancer Rep. 2011;3:15–23.

    Article  CAS  Google Scholar 

  39. Tsao A-N, et al. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep. 2022;47(5):1–12.

    Article  Google Scholar 

  40. Zhang Y, et al. Discovery of YH677 as a cancer stemness inhibitor that suppresses triple-negative breast cancer growth and metastasis by regulating the TGFbeta signaling pathway. Cancer Lett. 2023;560:216142.

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 2010;16(9):2580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moynagh PN. The NF-κB pathway. J Cell Sci. 2005;118(20):4589–92.

    Article  CAS  PubMed  Google Scholar 

  43. Marquardt JU, et al. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 2015;63(3):661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou J, et al. NF-κB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  45. Schreck R, et al. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med. 1992;175(5):1181–94.

    Article  CAS  PubMed  Google Scholar 

  46. MacKenzie CJ, et al. Enhancement of lipopolysaccharide-stimulated JNK activity in rat aortic smooth muscle cells by pharmacological and adenovirus-mediated inhibition of inhibitory kappa B kinase signalling. Br J Pharmacol. 2003;139(5):1041–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clayton S, Mousa SA. Therapeutics formulated to target cancer stem cells: Is it in our future? Cancer Cell Int. 2011;11:7.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gargini R, et al. Cancer stem cell-like phenotype and survival are coordinately regulated by Akt/FoxO/Bim pathway. Stem Cells. 2015;33(3):646–60.

    Article  CAS  PubMed  Google Scholar 

  49. Korkaya H, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7(6):e1000121.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ock CW, Kim GD. Dioscin decreases breast cancer stem-like cell proliferation via cell cycle arrest by modulating p38 mitogen-activated protein kinase and akt/mtor signaling pathways. J Cancer Prev. 2021;26(3):183.

    Article  PubMed Central  Google Scholar 

  51. Huang CC, et al. KLF4 and PCNA identify stages of tumor initiation in a conditional model of cutaneous squamous epithelial neoplasia. Cancer Biol Ther. 2005;4(12):1401–8.

    Article  CAS  PubMed  Google Scholar 

  52. Yu F, et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 2011;30(18):2161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orimo A, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.

    Article  CAS  PubMed  Google Scholar 

  54. Welschinger R, et al. Plerixafor (AMD3100) induces prolonged mobilization of acute lymphoblastic leukemia cells and increases the proportion of cycling cells in the blood in mice. Exp Hematol. 2012;41(3):293–302.

    Article  PubMed  Google Scholar 

  55. Prager GW, et al. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res. 2012;1(1):14–25.

    PubMed  PubMed Central  Google Scholar 

  56. Das B, et al. Quinacrine inhibits HIF-1α/VEGF-A mediated angiogenesis by disrupting the interaction between cMET and ABCG2 in patient-derived breast cancer stem cells. Phytomedicine. 2023;117:154914.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao J, et al. The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis. 2015;6(1):e1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Muthoni DK, et al. Identification of 3-O-α-l-arabinosyl oleanolic acid, a triterpenoid saponin, as a new breast cancer stem cell growth inhibitor. Nat Prod Res. 2022;36(11):2923–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang C, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016;113(14):E2047–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen M, et al. Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget. 2017;8(28):45759–67.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wojtkowiak JW, et al. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol Pharm. 2011;8(6):2032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chamie K, et al. Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: data from the phase III ARISER clinical trial. Urol Oncol. 2015;33(5):204.e25-33.

    Article  CAS  PubMed  Google Scholar 

  63. Xu Z, et al. Preparation of a camptothecin prodrug with glutathione-responsive disulfide linker for anticancer drug delivery. Chem Asian J. 2014;9:199–205.

    Article  CAS  PubMed  Google Scholar 

  64. Lee ES, et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Controll Release : Off J Controll Release Soc. 2008;129(3):228–36.

    Article  CAS  Google Scholar 

  65. Ahuja SK, Murphy PM. The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem. 1996;271(34):20545–50.

    Article  CAS  PubMed  Google Scholar 

  66. Ginestier C, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singh JK, et al. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 2013;19(3):643–56.

    Article  CAS  PubMed  Google Scholar 

  68. Schott AF, et al. Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer. Clin Cancer Res. 2017;23(18):5358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Garg M. MicroRNAs, stem cells and cancer stem cells. World J Stem cells. 2012;4(7):62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yan LX, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 2011;13(1):R2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shimono Y, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138(3):592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iliopoulos D, et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gong C, et al. MiR-106b expression determines the proliferation paradox of TGF-β in breast cancer cells. Oncogene. 2015;34(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  74. Juric et al., (2016) Ribociclib (LEE011) and letrozole in estrogen receptor-positive (ER+), HER2-negative (HERR ) advanced breast cancer (aBC): Phase Ib safety, preliminary efficacy and molecular analysis. 34, 568–568.

  75. Cao T, et al. CDK3, target of miR-4469, suppresses breast cancer metastasis via inhibiting Wnt/β-catenin pathway. Oncotarget. 2017;8(49):84917–27.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kong L-Y, et al. In vivo and in vitro effects of microRNA-27a on proliferation, migration and invasion of breast cancer cells through targeting of SFRP1 gene via Wnt/β-catenin signaling pathway. Oncotarget. 2017;8(9):15507–19.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Su X, et al. MicroRNA-134 targets KRAS to suppress breast cancer cell proliferation, migration and invasion. Oncol Lett. 2017;13(3):1932–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yahya SM, et al. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat. 2023;204(1):133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao Y, et al. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1. Tumor Biol. 2017;39(2):1010428317692264.

    Article  Google Scholar 

  80. Jasim SA, et al. An in vitro investigation of the apoptosis-inducing activity of corosolic acid in breast cancer cells. Iran J Basic Med Sci. 2023;26(4):453–60.

    PubMed  PubMed Central  Google Scholar 

  81. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou J, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  83. Gupta PB, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fuchs D, et al. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem Biophys Res Commun. 2009;390(3):743–9.

    Article  CAS  PubMed  Google Scholar 

  85. Ko D, et al. Anti-metastatic potential of pitavastatin in triple-negative breast cancer via targeting breast cancer stem-like properties and STAT3 signaling. Cancer Res. 2023;83(7):5800–5800.

    Article  Google Scholar 

  86. Nalla LV, Khairnar A. Empagliflozin mediated miR-128-3p upregulation promotes differentiation of hypoxic cancer stem-like cells in breast cancer. Eur J Pharmacol. 2023;943:175565.

    Article  CAS  PubMed  Google Scholar 

  87. Yan Y, et al. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med. 2016;16(1):113.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jin X, Jin X, Kim H. Cancer stem cells and differentiation therapy. Tumor Biol. 2017;39(10):1010428317729933.

    Article  Google Scholar 

  89. Yan Y, et al. All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med. 2016;16:113.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Patel SA, et al. Challenges in the development of future treatments for breast cancer stem cells. Breast cancer: Targ Ther. 2010;2:1.

    Google Scholar 

  91. Van Pham P, et al. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results. Onco Targets Ther. 2016;9:4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah D, Osipo C. Cancer stem cells and HER2 positive breast cancer: The story so far. Genes Dis. 2016;3(2):114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Korkaya H, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47(4):570–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Montales MTE, et al. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis. 2012;33(3):652–60.

    Article  CAS  PubMed  Google Scholar 

  95. Higdon JV, et al. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55(3):224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ambrosone CB, et al. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J Nutr. 2004;134(5):1134–8.

    Article  CAS  PubMed  Google Scholar 

  97. Li Y, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(9):2580–90.

    Article  CAS  Google Scholar 

  98. Wang Y, et al. Differential effects of sulforaphane in regulation of angiogenesis in a co-culture model of endothelial cells and pericytes. Oncol Rep. 2017;37(5):2905–12.

    Article  CAS  PubMed  Google Scholar 

  99. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008;269(2):291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang M, et al. Cancer stem cells as a potential therapeutic target in breast cancer. Stem Cell Investig. 2014. https://doi.org/10.3978/j.issn.2306-9759.2014.06.01.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Berzofsky JA, et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Investig. 2004;113(11):1515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Satthaporn S, et al. Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol Immunother. 2004;53(6):510–8.

    Article  PubMed  Google Scholar 

  103. Ni J, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother. 2020;126:110046.

    Article  CAS  PubMed  Google Scholar 

  104. Choi AH, et al. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines. 2016;4(3):18.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rowan K. Oncolytic viruses move forward in clinical trials. JNCI J Natl Cancer Inst. 2010;102(9):590–5.

    Article  PubMed  Google Scholar 

  107. Marcato P, et al. Oncolytic reovirus effectively targets breast cancer stem cells. Mol Ther. 2009;17(6):972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang H, et al. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med. 2012;10:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gomes EM, et al. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res. 2009;15(4):1317–25.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang JF, et al. Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therapy. Proc Natl Acad Sci USA. 1996;93(9):4513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gil M, et al. Targeting CXCL12/CXCR4 signaling with oncolytic virotherapy disrupts tumor vasculature and inhibits breast cancer metastases. Proc Natl Acad Sci U S A. 2013;110(14):E1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. He L, et al. Nanomedicine-mediated therapies to target breast cancer stem cells. Front Pharmacol. 2016;7:313–313.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gao Y, et al. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv. 2014;32(4):761–77.

    Article  CAS  PubMed  Google Scholar 

  114. Estanqueiro M, et al. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015;126:631–48.

    Article  CAS  PubMed  Google Scholar 

  115. Shen S, Xia JX, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials. 2016;74:1–18.

    Article  CAS  PubMed  Google Scholar 

  116. Aires A, et al. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology. 2016;27(6):065103.

    Article  PubMed  Google Scholar 

  117. Gener P, et al. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells. Nanomedicine. 2015;11(8):1883–92.

    Article  CAS  PubMed  Google Scholar 

  118. Ganesh S, et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34(13):3489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rao W, et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano. 2015;9(6):5725–40.

    Article  CAS  PubMed  Google Scholar 

  120. Gaio E, et al. CD44 targeting mediated by polymeric nanoparticles and combination of chlorine TPCS(2a)-PDT and docetaxel-chemotherapy for efficient killing of breast differentiated and stem cancer cells in vitro. Cancers. 2020;12(2):278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Z, et al. CD44 directed nanomicellar payload delivery platform for selective anticancer effect and tumor specific imaging of triple negative breast cancer. Nanomed Nanotechnol Biol Med. 2018;14(4):1441–54.

    Article  CAS  Google Scholar 

  122. Zhang X, et al. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydr Polym. 2019;221:84–93.

    Article  CAS  PubMed  Google Scholar 

  123. Jeong K, et al. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Lett. 2016;374(1):31–43.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang L, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 2012;33(2):565–82.

    Article  CAS  PubMed  Google Scholar 

  125. Yu LY, et al. Glucose transporter 1-mediated transcytosis of glucosamine-labeled liposomal ceramide targets hypoxia niches and cancer stem cells to enhance therapeutic efficacy. ACS Nano. 2023;17(14):13158–75.

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen VD, et al. Folate receptor-targeted liposomal nanocomplex for effective synergistic photothermal-chemotherapy of breast cancer in vivo. Colloids Surf B Biointerfaces. 2019;173:539–48.

    Article  CAS  PubMed  Google Scholar 

  127. Chiani M, et al. Folic acid conjugated nanoliposomes as promising carriers for targeted delivery of bleomycin. Artif Cells Nanomed Biotechnol. 2018;46(4):757–63.

    Article  CAS  PubMed  Google Scholar 

  128. Kushwah V, et al. Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes. Colloids Surf B Biointerfaces. 2018;172:213–23.

    Article  CAS  PubMed  Google Scholar 

  129. Hong S, et al. Aptamer-integrated α-Gal liposomes as bispecific agents to trigger immune response for killing tumor cells. J Biomed Mater Res A. 2019;107(6):1176–83.

    Article  CAS  PubMed  Google Scholar 

  130. Kim YJ, et al. Co-eradication of breast cancer cells and cancer stem cells by cross-linked multilamellar liposomes enhances tumor treatment. Mol Pharm. 2015;12(8):2811–22.

    Article  CAS  PubMed  Google Scholar 

  131. Rana MS, et al. A new liposomal nanocarrier for co-delivery of gedunin and p-glycoprotein siRNA to target breast cancer stem cells. Nat Prod Res. 2022;36(24):6389–92.

    Article  CAS  PubMed  Google Scholar 

  132. Ahmad A, et al. Development of liposomal formulation for delivering anticancer drug to breast cancer stem-cell-like cells and its pharmacokinetics in an animal model. Mol Pharm. 2016;13(3):1081–8.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang Y, et al. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials. 2012;33(2):679–91.

    Article  CAS  PubMed  Google Scholar 

  134. Ke XY, et al. Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials. 2014;35(3):1096–108.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang J, et al. Effective treatment of drug resistant recurrent breast tumors harboring cancer stem-like cells by staurosporine/epirubicin co-loaded polymeric micelles. J Control Release. 2017;264:127–35.

    Article  CAS  PubMed  Google Scholar 

  136. Xiang J, et al. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Sci China Life Sci. 2018;61(4):436–47.

    Article  CAS  PubMed  Google Scholar 

  137. Lecot et al., Glucosylated polymeric micelles actively target a breast cancer model. n/a(n/a), 2000010

  138. Amreddy N, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018;137:115–70.

    Article  CAS  PubMed  Google Scholar 

  139. Sun R, et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials. 2015;37:405–14.

    Article  CAS  PubMed  Google Scholar 

  140. de Sousa Marcial SP, Carneiro G, Leite EA. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. J Nanoparticle Res. 2017;19(10):340.

    Article  Google Scholar 

  141. Wong MY, Chiu GN. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine. 2011;7(6):834–40.

    Article  CAS  PubMed  Google Scholar 

  142. Şalva E, et al. The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm. 2015;478(1):147–54.

    Article  PubMed  Google Scholar 

  143. Li SY, et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release. 2015;205:7–14.

    Article  CAS  PubMed  Google Scholar 

  144. Jin G, et al. Theranostics of triple-negative breast cancer based on conjugated polymer nanoparticles. ACS Appl Mater Interfaces. 2018;10(13):10634–46.

    Article  CAS  PubMed  Google Scholar 

  145. Shen S, et al. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release. 2015;208:14–24.

    Article  CAS  PubMed  Google Scholar 

  146. Sun R, et al. Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials. 2016;103:44–55.

    Article  CAS  PubMed  Google Scholar 

  147. Gao J, et al. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomed. 2019;14:9199–216.

    Article  CAS  Google Scholar 

  148. Jeon M, et al. Paclitaxel-loaded iron oxide nanoparticles for targeted breast cancer therapy. Adv Ther. 2019;2(12):1900081.

    Article  CAS  Google Scholar 

  149. Tran T, et al. Synergistic therapeutic strategy of dual drug-loaded lipid polymer hybrid nanoparticles for breast cancer treatment. Indian J Pharm Sci. 2019;81:474–82.

    Article  CAS  Google Scholar 

  150. Esnaashari SS, et al. A combinational approach towards treatment of breast cancer: an analysis of noscapine-loaded polymeric nanoparticles and doxorubicin. AAPS PharmSciTech. 2020;21(5):166.

    Article  CAS  PubMed  Google Scholar 

  151. Sulaiman A, et al. Co-targeting bulk tumor and CSCs in clinically translatable tnbc patient-derived xenografts via combination nanotherapy. Mol Cancer Ther. 2019;18(10):1755.

    Article  CAS  PubMed  Google Scholar 

  152. Zhang N, et al. Loading lovastatin into camptothecin-floxuridine conjugate nanocapsules for enhancing anti-metastatic efficacy of cocktail chemotherapy on triple-negative breast cancer. ACS Appl Mater Interfaces. 2018;10(35):29385–97.

    Article  CAS  PubMed  Google Scholar 

  153. Liang DS, et al. Vitamin E-based redox-sensitive salinomycin prodrug-nanosystem with paclitaxel loaded for cancer targeted and combined chemotherapy. Colloids Surf B Biointerfaces. 2018;172:506–16.

    Article  CAS  PubMed  Google Scholar 

  154. Tran TA, et al. Inhibitory effect of zinc sulfide nanoparticles towards breast cancer stem cell migration and invasion. J Biomed Nanotechnol. 2016;12(2):329–36.

    Article  CAS  PubMed  Google Scholar 

  155. Dash SR, et al. Near-infrared enhances antiangiogenic potentiality of quinacrine-gold hybrid nanoparticles in breast cancer stem cells via deregulation of HSP-70/TGF-beta. Nanomedicine (Lond). 2023;18(1):19–33.

    Article  CAS  PubMed  Google Scholar 

  156. Wu K, et al. An iron oxyhydroxide-based nanosystem sensitizes ferroptosis by a “Three-Pronged” strategy in breast cancer stem cells. Acta Biomater. 2023;160:281–96.

    Article  CAS  PubMed  Google Scholar 

  157. Sarika PR, Nirmala RJ. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng, C. 2016;65:331–7.

    Article  CAS  Google Scholar 

  158. Guo H, et al. Chitosan-based nanogel enhances chemotherapeutic efficacy of 10-hydroxycamptothecin against human breast cancer cells. Int J Polym Sci. 2019;2019:1914976.

    Article  Google Scholar 

  159. Gülçür E, et al. Curcumin in VIP-targeted sterically stabilized phospholipid nanomicelles: a novel therapeutic approach for breast cancer and breast cancer stem cells. Drug Deliv Transl Res. 2013;3(6):562–74. https://doi.org/10.1007/s13346-013-0167-6.

    Article  CAS  Google Scholar 

  160. Dian L-H, et al. Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomed. 2018;13:719–31.

    Article  CAS  Google Scholar 

  161. Gong Z, et al. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct Target Ther. 2020;5(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Farhadi S, et al. Exosomal delivery of 7SK long non-coding RNA suppresses viability, proliferation, aggressiveness and tumorigenicity in triple negative breast cancer cells. Life Sci. 2023;322:121646.

    Article  CAS  PubMed  Google Scholar 

  163. Ohno S-I, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.

    Article  CAS  PubMed  Google Scholar 

  164. Yang M, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10(1):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mina LA, et al. Immunotherapy for the treatment of breast cancer: emerging new data. Breast cancer (Dove Medical Press). 2019;11:321–8.

    CAS  PubMed  Google Scholar 

  166. Yang M, et al. Mesothelin-targeted CAR-NK cells derived from induced pluripotent stem cells have a high efficacy in killing triple-negative breast cancer cells as shown in several preclinical models. J Immunother. 2023;46(8):285–94.

    Article  CAS  PubMed  Google Scholar 

  167. Nanda R, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Dirix LY, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study. Breast Cancer Res Treat. 2018;167(3):671–86.

    Article  CAS  PubMed  Google Scholar 

  169. Schmid P, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108–21.

    Article  CAS  PubMed  Google Scholar 

  170. Adams S, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  171. Schmid P, et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N Engl J Med. 2020;382(9):810–21.

    Article  CAS  PubMed  Google Scholar 

  172. Lang J-Y, et al. BikDD eliminates breast cancer initiating cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell. 2011;20(3):341–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Thapa B, et al. Breathing new life into TRAIL for breast cancer therapy: co-delivery of pTRAIL and complementary siRNAs using lipopolymers. Hum Gene Ther. 2019;30(12):1531–46.

    Article  CAS  PubMed  Google Scholar 

  174. Kretzmann JA, et al. Tumor suppression by targeted intravenous non-viral CRISPRa using dendritic polymers. Chem Sci. 2019;10(33):7718–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Moradian C, Rahbarizadeh F. Targeted toxin gene therapy of breast cancer stem cells using CXCR1 Promoter and bFGF 5’UTR. Onco Targets Ther. 2019;12:8809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zuo ZQ, et al. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-beta signaling pathway inhibition. Biomaterials. 2016;82:48–59.

    Article  CAS  PubMed  Google Scholar 

  177. Agency FD. New Drug Approvals for 2019. 2019 [cited 2020 18-11-2020]; Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019.

  178. Agency FD, Novel drug approvals for 2020. 2020 [cited 2020 18-11-2020]; Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2020.

Download references

Acknowledgements

None

Funding

This work received no funding.

Author information

Authors and Affiliations

Authors

Contributions

First two authors contributed equally to this work. KA and MN wrote the manuscript and conceived the idea, edited the manuscript and worked on nano-technology approaches, gene therapy and immunotherapy and diet mediate therapy. FM provided in-depth information about the signaling pathways and made that figure, and edited the manuscript; MIQ and MI contributed in providing valuable information on surface receptors and transporters, revised the manuscript, and tabulated the studies on nanocarriers; MFR and FKH edited the manuscript and wrote tumor microenvironment and miRNA-based approaches; SAH prepared figures for the manuscript and edited the manuscript; HS supervised the work, edited the manuscript and tabulated the results on surface receptor targeting, and provided literature searches. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hamid Saeed.

Ethics declarations

Conflict of interest

None to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, K., Nabeel, M., Mohsin, F. et al. Recent developments in targeting breast cancer stem cells (BCSCs): a descriptive review of therapeutic strategies and emerging therapies. Med Oncol 41, 112 (2024). https://doi.org/10.1007/s12032-024-02347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02347-z

Keywords

Navigation