Skip to main content
Log in

Conserved and divergent processing of neuroligin and neurexin genes: from the nematode C. elegans to human

  • Review Article
  • Published:
Invertebrate Neuroscience

Abstract

Neuroligins are cell-adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin-encoding genes are implicated in autism spectrum disorder and/or mental retardation. Moreover, some copy number variations and point mutations in neurexin-encoding genes have been linked to neurodevelopmental disorders including autism. Neurexins are subject to extensive alternative splicing, highly regulated in mammals, with a great physiological importance. In addition, neuroligins and neurexins are subjected to proteolytic processes that regulate synaptic transmission modifying pre- and postsynaptic activities and may also regulate the remodelling of spines at specific synapses. Four neuroligin genes exist in mice and five in human, whilst in the nematode Caenorhabditis elegans, there is only one orthologous gene. In a similar manner, in mammals, there are three neurexin genes, each of them encoding two major isoforms named α and β, respectively. In contrast, there is one neurexin gene in C. elegans that also generates two isoforms like mammals. The complexity of the genetic organization of neurexins is due to extensive processing resulting in hundreds of isoforms. In this review, a wide comparison is made between the genes in the nematode and human with a view to better understanding the conservation of processing in these synaptic proteins in C. elegans, which may serve as a genetic model to decipher the synaptopathies underpinning neurodevelopmental disorders such as autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Sudhof TC (2013) Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking. Cell 154(1):75–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bang ML, Owczarek S (2013) A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res 38(6):1174–1189

    Article  PubMed  CAS  Google Scholar 

  • Banovic D, Khorramshahi O, Owald D, Wichmann C, Riedt T, Fouquet W et al (2010) Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron 66(5):724–738

    Article  PubMed  CAS  Google Scholar 

  • Baudouin S, Scheiffele P (2010) SnapShot: neuroligin-neurexin complexes. Cell 141(5):908–908e1

    Article  PubMed  Google Scholar 

  • Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P et al (2012) Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 338(6103):128–132

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA et al (1996) A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87(6):1059–1068

    Article  PubMed  CAS  Google Scholar 

  • Bemben MA, Shipman SL, Hirai T, Herring BE, Li Y, Badger JD 2nd et al (2014) CaMKII phosphorylation of neuroligin-1 regulates excitatory synapses. Nat Neurosci 17(1):56–64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bolliger MF, Frei K, Winterhalter KH, Gloor SM (2001) Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J 356(Pt 2):581–588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC (2005) A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 48(2):229–236

    Article  PubMed  CAS  Google Scholar 

  • Boucard AA, Maxeiner S, Sudhof TC (2013) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 2891(1):387–402

    Google Scholar 

  • Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26(7):1738–1748

    Article  PubMed  Google Scholar 

  • Calahorro F, Ruiz-Rubio M (2012) Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes. PLoS ONE 7(6):e39277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Calahorro F, Ruiz-Rubio M (2013) Human alpha- and beta-NRXN1 isoforms rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient mutants. Genes Brain Behav 12(4):453–464

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307(5713):1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Chih B, Gollan L, Scheiffele P (2006) Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51(2):171–178

    Article  PubMed  CAS  Google Scholar 

  • Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR et al (2007) Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 54(6):919–931

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Comoletti D, Flynn R, Jennings LL, Chubykin A, Matsumura T, Hasegawa H et al (2003) Characterization of the interaction of a recombinant soluble neuroligin-1 with neurexin-1beta. J Biol Chem 278(50):50497–50505

    Article  PubMed  CAS  Google Scholar 

  • Comoletti D, Flynn RE, Boucard AA, Demeler B, Schirf V, Shi J et al (2006) Gene selection, alternative splicing, and post-translational processing regulate neuroligin selectivity for beta-neurexins. Biochemistry 45(42):12816–12827

    Article  PubMed  CAS  Google Scholar 

  • Crane MM, Stirman JN, Ou CY, Kurshan PT, Rehg JM, Shen K et al (2012) Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat Methods 9(10):977–980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • de Wit J, Sylwestrak E, O’Sullivan ML, Otto S, Tiglio K, Savas JN et al (2009) LRRTM2 interacts with Neurexin1 and regulates excitatory synapse formation. Neuron 64(6):799–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudanova I, Sedej S, Ahmad M, Masius H, Sargsyan V, Zhang W et al (2006) Important contribution of alpha-neurexins to Ca2 + -triggered exocytosis of secretory granules. J Neurosci 26(41):10599–10613

    Article  PubMed  CAS  Google Scholar 

  • El Bejjani R, Hammarlund M (2012) Notch signaling inhibits axon regeneration. Neuron 73(2):268–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Etherton MR, Blaiss CA, Powell CM, Sudhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106(42):17998–18003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M et al (2011) Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proc Natl Acad Sci U S A 108(33):13764–13769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P et al (2007) Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron 56(6):979–991

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foldy C, Malenka RC, Sudhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78(3):498–509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16(5):633–647

    Article  PubMed  CAS  Google Scholar 

  • Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N et al (2011) Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet 130(4):563–573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gibson JR, Huber KM, Sudhof TC (2009) Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci 29(44):13883–13897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB et al (2013) Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 493(7432):371–377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graf ER, Kang Y, Hauner AM, Craig AM (2006) Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci 26(16):4256–4265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grayton HM, Missler M, Collier DA, Fernandes C (2013) Altered social behaviours in neurexin 1alpha knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE 8(6):e67114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haklai-Topper L, Soutschek J, Sabanay H, Scheel J, Hobert O, Peles E (2011) The neurexin superfamily of Caenorhabditis elegans. Gene Expr Patterns 11(1–2):144–150

    Article  PubMed  CAS  Google Scholar 

  • Hoon M, Bauer G, Fritschy JM, Moser T, Falkenburger BH, Varoqueaux F (2009) Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci 29(25):8039–8050

    Article  PubMed  CAS  Google Scholar 

  • Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt KF et al (2011) Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 108(7):3053–3058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5–6):366–376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C et al (1995) Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell 81(3):435–443

    Article  PubMed  CAS  Google Scholar 

  • Ichtchenko K, Nguyen T, Sudhof TC (1996) Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem 271(5):2676–2682

    Article  PubMed  CAS  Google Scholar 

  • Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S et al (2011) SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147(7):1601–1614

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Izquierdo PG, Calahorro F, Ruiz-Rubio M (2013) Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans. Neurogenetics 14(3–4):233–242

    Article  PubMed  CAS  Google Scholar 

  • Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kattenstroth G, Tantalaki E, Sudhof TC, Gottmann K, Missler M (2004) Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. Proc Natl Acad Sci U S A 101(8):2607–2612

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knight D, Xie W, Boulianne GL (2011) Neurexins and neuroligins: recent insights from invertebrates. Mol Neurobiol 44(3):426–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koehnke J, Jin X, Budreck EC, Posy S, Scheiffele P, Honig B et al (2008) Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2. Proc Natl Acad Sci U S A 105(6):1873–1878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koehnke J, Katsamba PS, Ahlsen G, Bahna F, Vendome J, Honig B et al (2010) Splice form dependence of beta-neurexin/neuroligin binding interactions. Neuron 67(1):61–74

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Ashley J, Budnik V, Bhat MA (2007a) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55(5):741–755

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Q, Lee JA, Black DL (2007b) Neuronal regulation of alternative pre-mRNA splicing. Nat Rev Neurosci 8(11):819–831

    Article  PubMed  CAS  Google Scholar 

  • Maeder CI, San-Miguel A, Wu EY, Lu H, Shen K (2014) In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic 15(3):273–291

    Article  PubMed  CAS  Google Scholar 

  • Margeta MA, Shen K, Grill B (2008) Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode C. elegans. Curr Opin Neurobiol 18(1):69–76

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Yuzaki M (2011) Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci 33(8):1447–1461

    Article  PubMed  Google Scholar 

  • Missler M, Sudhof TC (1998) Neurexins: three genes and 1001 products. Trends Genet 14(1):20–26

    Article  PubMed  CAS  Google Scholar 

  • Missler M, Fernandez-Chacon R, Sudhof TC (1998) The making of neurexins. J Neurochem 71(4):1339–1347

    Article  PubMed  CAS  Google Scholar 

  • Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann K et al (2003) Alpha-neurexins couple Ca2 + channels to synaptic vesicle exocytosis. Nature 423(6943):939–948

    Article  PubMed  CAS  Google Scholar 

  • Peixoto RT, Kunz PA, Kwon H, Mabb AM, Sabatini BL, Philpot BD et al (2012) Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76(2):396–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T et al (2009) Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 63(5):628–642

    Article  PubMed  CAS  Google Scholar 

  • Priess JR (2005) Notch signaling in the C. elegans embryo. WormBook 25:1–16

    Google Scholar 

  • Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A (2000) Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci 3(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Reissner C, Klose M, Fairless R, Missler M (2008) Mutational analysis of the neurexin/neuroligin complex reveals essential and regulatory components. Proc Natl Acad Sci U S A 105(39):15124–15129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rowen L, Young J, Birditt B, Kaur A, Madan A, Philipps DL et al (2002) Analysis of the human neurexin genes: alternative splicing and the generation of protein diversity. Genomics 79(4):587–597

    Article  PubMed  CAS  Google Scholar 

  • Runkel F, Rohlmann A, Reissner C, Brand SM, Missler M (2013) Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem 127(1):36–47

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70(5):863–885

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D et al (2013) Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493(7432):411–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saura CA, Servian-Morilla E, Scholl FG (2011) Presenilin/gamma-secretase regulates neurexin processing at synapses. PLoS ONE 6(4):e19430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101(6):657–669

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci 30(22):7495–7506

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, Horiuchi K et al (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76(2):410–422

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Sudhof TC (2002) Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 79(6):849–859

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847):71–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Treutlein B, Gokce O, Quake SR, Sudhof TC (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci U S A 111(13):E1291–E1299

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141(6):1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Ullrich B, Ushkaryov YA, Sudhof TC (1995) Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14(3):497–507

    Article  PubMed  CAS  Google Scholar 

  • Ushkaryov YA, Sudhof TC (1993) Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci U S A 90(14):6410–6414

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257(5066):50–56

    Article  PubMed  CAS  Google Scholar 

  • Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S et al (2012) Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet 90(1):133–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K et al (2006) Neuroligins determine synapse maturation and function. Neuron 51(6):741–754

    Article  PubMed  CAS  Google Scholar 

  • Xu JY, Xia QQ, Xia J (2012) A review on the current neuroligin mouse models. Sheng Li Xue Bao 64(5):550–562

    PubMed  CAS  Google Scholar 

  • Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581(13):2509–2516

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE, Sudhof TC et al (2005) Extracellular domains of alpha-neurexins participate in regulating synaptic transmission by selectively affecting N- and P/Q-type Ca2 + channels. J Neurosci 25(17):4330–4342

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am very grateful to Lindy Holden-Dye and Vincent O’Connor for comments and critical reading of the manuscript. I also thank Lindy Holden-Dye, Vincent O’Connor and James Dillon for supervision, support and assistance. Suggestions and comments from Kathy-Ann Koralek are sincerely acknowledged.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Calahorro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calahorro, F. Conserved and divergent processing of neuroligin and neurexin genes: from the nematode C. elegans to human. Invert Neurosci 14, 79–90 (2014). https://doi.org/10.1007/s10158-014-0173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-014-0173-5

Keywords

Navigation