Skip to main content
Log in

Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Neuroligins are neuronal and neuromuscular transmembrane proteins that have been implicated in autism spectrum disorder and other cognitive diseases. The nlg-1 gene from Caenorhabditis elegans is orthologous to human neuroligin genes. In the nematode, the locomotory rate is mediated by dopaminergic and serotonergic pathways, which result in two different behavioral responses known as basal slowing response (BSR) and enhanced slowing response (ESR), respectively. We report that nlg-1-deficient mutants are defective in both the BSR and ESR behaviors. In addition, we demonstrate that methylphenidate (a dopamine reuptake inhibitor) and fluoxetine (a serotonin reuptake inhibitor), two drugs widely used for the treatment of behavioral disorders in humans, are able to restore the BSR and ESR wild type phenotypes, respectively, in nlg-1 defective mutant nematodes. The abnormal locomotory behavior patterns were rescued in nlg-1-deficient mutant by expressing a cDNA from the human NLGN1 gene under the C. elegans nlg-1 promoter. However, human NLGN1 (R453C) and NLGN1 (D432X) mutant alleles did not rescue any of the two mutant phenotypes. The results indicate that neuroligin is involved in modulating the action of dopamine and serotonin in the nematode and suggest that the functional mechanism underpinning both methylphenidate and fluoxetine in C. elegans might be comparable to that in humans. The neuroligin-deficient mutants may undergo inefficient synaptic transmissions which could affect different traits in the nervous system. In particular, neuroligin might be required for normal neurotransmitters release. The understanding of the mechanisms by which methylphenidate and fluoxetine are able to restore the behavior of these mutants could help to explain the etiology of some human neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garber K (2007) Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science 317(5835):190–191

    Article  PubMed  CAS  Google Scholar 

  2. Zoghbi HY (2003) Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302(5646):826–830

    Article  PubMed  CAS  Google Scholar 

  3. Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29(1):21–29

    Article  PubMed  CAS  Google Scholar 

  4. Etherton MR, Tabuchi K, Sharma M, Ko J, Sudhof TC (2011) An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus. EMBO J 30(14):2908–2919

    Article  PubMed  CAS  Google Scholar 

  5. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29

    Article  PubMed  CAS  Google Scholar 

  6. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns JP, Ropers HH, Hamel BC, Andres C, Barthelemy C, Moraine C, Briault S (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557

    Article  PubMed  CAS  Google Scholar 

  7. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J (2008) Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 16(5):614–618

    Article  PubMed  CAS  Google Scholar 

  8. Talebizadeh Z, Bittel DC, Veatch OJ, Butler MG, Takahashi TN, Miles JH (2004) Do known mutations in neuroligin genes (NLGN3 and NLGN4) cause autism? J Autism Dev Disord 34(6):735–736

    Article  PubMed  Google Scholar 

  9. Wu S, Jia M, Ruan Y, Liu J, Guo Y, Shuang M, Gong X, Zhang Y, Yang X, Zhang D (2005) Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol Psychiatry 58(1):74–77

    Article  PubMed  CAS  Google Scholar 

  10. Hunter JW, Mullen GP, McManus JR, Heatherly JM, Duke A, Rand JB (2010) Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Dis Model Mech 3(5–6):366–376

    Article  PubMed  CAS  Google Scholar 

  11. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353–363

    Article  PubMed  CAS  Google Scholar 

  12. Hu Z, Hom S, Kudze T, Tong XJ, Choi S, Aramuni G, Zhang W, Kaplan JM (2012) Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans. Science 337(6097):980–984

    Article  PubMed  CAS  Google Scholar 

  13. Calahorro F, Alejandre E, Ruiz-Rubio M (2009) Osmotic avoidance in Caenorhabditis elegans: synaptic function of two genes, orthologues of human NRXN1 and NLGN1, as candidates for autism. J Vis Exp 11(34):1616

    Google Scholar 

  14. Calahorro F, Ruiz-Rubio M (2012) Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes. PLoS ONE 7(6):e39277

    Article  PubMed  CAS  Google Scholar 

  15. Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  PubMed  CAS  Google Scholar 

  16. Iversen L (2006) Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 147(Suppl 1):S82–S88

    PubMed  CAS  Google Scholar 

  17. Vles JS, Feron FJ, Hendriksen JG, Jolles J, van Kroonenburgh MJ, Weber WE (2003) Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD). Neuropediatrics 34(2):77–80

    Article  PubMed  CAS  Google Scholar 

  18. Byerley WF, Reimherr FW, Wood DR, Grosser BI (1988) Fluoxetine, a selective serotonin uptake inhibitor, for the treatment of outpatients with major depression. J Clin Psychopharmacol 8(2):112–115

    Article  PubMed  CAS  Google Scholar 

  19. Mostert JP, Koch MW, Heerings M, Heersema DJ, De Keyser J (2008) Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci Ther 14(2):153–164

    Article  PubMed  CAS  Google Scholar 

  20. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619–631

    Article  PubMed  CAS  Google Scholar 

  21. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  22. Granato M, Schnabel H, Schnabel R (1994) pha-1, a selectable marker for gene transfer in C. elegans. Nucleic Acids Res 22(9):1762–1763

    Article  PubMed  CAS  Google Scholar 

  23. McDonald PW, Hardie SL, Jessen TN, Carvelli L, Matthies DS, Blakely RD (2007) Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 27(51):14216–14227

    Article  PubMed  CAS  Google Scholar 

  24. Carvelli L, McDonald PW, Blakely RD, Defelice LJ (2004) Dopamine transporters depolarize neurons by a channel mechanism. Proc Natl Acad Sci U S A 101(45):16046–16051

    Article  PubMed  CAS  Google Scholar 

  25. Jayanthi LD, Apparsundaram S, Malone MD, Ward E, Miller DM, Eppler M, Blakely RD (1998) The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol Pharmacol 54(4):601–609

    PubMed  CAS  Google Scholar 

  26. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155(10):1325–1331

    PubMed  CAS  Google Scholar 

  27. Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invert Neurosci 11:73–83

    Article  PubMed  Google Scholar 

  28. Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75(7):711–721

    PubMed  CAS  Google Scholar 

  29. Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuro-Psychopharmacol Biol Psychiatry 27(1):85–102

    Article  CAS  Google Scholar 

  30. Calahorro F, Ruiz-Rubio M (2013) Human alpha- and beta-NRXN1 isoforms rescue behavioral impairments of Caenorhabditis elegans neurexin-deficient mutants. Genes Brain Behav 12(4):453–464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Caenorhabditis Genetics Center, the Japanese National Bioresource Project, Antonio Miranda-Vizuete, Julián Cerón, Thomas Dresbach, Peter Askjaer, Juan Cabello, Noemi Cabrera-Poch, Rosina Giordano, and Denis Dupuy for sharing worm strains and plasmids. We are thankful to Jim Rand for the information about the C. elegans nlg-1 promoter, to Randy Blakely for the SWIP assay protocol, and to Antonio Miranda-Vizuete and Elena P. Nadales for critical reading of the manuscript. We also thank Justo P. Castaño for giving us the opportunity to use the microinjection station in his lab. Comments from Encarna Alejandre and assistance from Isabel Caballero are sincerely acknowledged. This work was supported by grant PI0197 from the Consejería de Salud, Junta de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz-Rubio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izquierdo, P.G., Calahorro, F. & Ruiz-Rubio, M. Neuroligin modulates the locomotory dopaminergic and serotonergic neuronal pathways of C. elegans . Neurogenetics 14, 233–242 (2013). https://doi.org/10.1007/s10048-013-0377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-013-0377-6

Keywords

Navigation