Skip to main content
Log in

Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Drought, a major abiotic limiting factor, could be modulated with in-built reprogramming of plants at molecular level by regulating the activity of plant developmental processes, stress endurance and adaptation. The transgenic Arabidopsis thaliana over-expressing metallothionein 1 (MT1) gene of desi chickpea (Cicer arietinum L.) was subjected to transcriptome analysis. We evaluated drought tolerance of 7 days old plants of Arabidopsis thaliana in both wild-type (WT) as well as transgenic plants and performed transcriptome analysis. Our analysis revealed 24,737 transcripts representing 24,594 genes out of which 5,816 were differentially expressed genes (DEGs) under drought conditions and 841 genes were common in both genotypes. A total of 1251 DEGs in WT and 2099 in MT1 were identified in comparison with control. Out of the significant DEGs, 432 and 944 were upregulated, whereas 819 and 1155 were downregulated in WT and MT1 plants, respectively. The physiological and molecular parameters involving germination assay, root length measurements under different stress treatments and quantitative expression analysis of transgenic plants in comparison to wild-type were found to be enhanced. CarMT1 plants also demonstrated modulation of various other stress-responsive genes that reprogrammed themselves for stress adaptation. Amongst various drought-responsive genes, 24 DEGs showed similar quantitative expression as obtained through RNA sequencing data. Hence, these modulatory genes could be used as a genetic tool for understanding and delineating the mechanisms for fine-tuning of stress responses in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahammed GJ, Li X, Liu A Chen S (2020). Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Regul 39.

  • JP An R Li FJ Qu CX You WXF YJ Hao 2017 Ectopic expression of an apple cytochrome P450 gene MdCYPM1 negatively regulates plant photomorphogenesis and stress response in Arabidopsis Biochem Biophys Res Commun 483 1 9

  • Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S (2010). FastQC.

  • Arif K, Ahmad R, Khan SA, Asad SA, Ahmad T, Abbasi GH, Shahzad M (2017) Molecular characterization of growth and proteolysis related genes in maize under drought stress. Pak J Bot 49:2127–2132

    CAS  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: jack of many trades in plants. Plant Signal Behav 9:27700

    Article  PubMed  Google Scholar 

  • Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBioChem 10:55–62

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YY, Yang JF, Liu TY, Su ZF, Zhu FY, Chen MX, Fan T, Ye NH, Feng Z, Wang LJ, Hao GF (2017) A phylogenetically informed comparison of GH1 hydrolases between Arabidopsis and rice response to stressors. Front Plant Sci 8:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandel SS, Sharma PN, Sharma KD (2021) Effect of heat stress on expression of glucose-6-phosphate/phosphate translocators in chickpea leaves. HJAR 46:119–129

    Google Scholar 

  • Chen T, Li W, Hu X, Guo J, Liu A, Zhang B (2015) A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant Cell Physiol 56:917–929

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Silva NDG, Cholewa E, Ryser P (2012) Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). J Exp Bot 63:5957–5966

    Article  PubMed  Google Scholar 

  • A Zelicourt de CJ H Hirt 2016 The role of MAPK modules and ABA during abiotic stress signaling Trends Plant Sci 21 677 685

  • Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinform 51:11–14

    Article  Google Scholar 

  • YZ Du Q L Chen X Yao W Zhang B Zhang F Xie 2020 Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings Plant Physiol Biochem 146 1 12

  • Duan L, Yu J, Xu L, Tian P, Hu X, Song X, Pan Y (2019) Functional characterization of a type 4 metallothionein gene (CsMT4) in cucumber. Hortic Plant J 5:120–128

    Article  Google Scholar 

  • Dubey AK, Kumar N, Kumar A, Ansari MA, Ranjan R, Meenakshi GA, Sahu N, Pandey V, Behera SK, Mallick S, Pande V (2019) Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L. Ecotoxicol Environ Saf 171:54–65

    Article  CAS  PubMed  Google Scholar 

  • M Elasad A Ahmad WH L Ma S Yu H Wei 2020 Overexpression of CDSP32 (GhTRX134) cotton gene enhances drought, salt, and oxidative stress tolerance in Arabidopsis Plants 9 1388

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012). Drought stress in plants: an overview. Plant responses to drought stress. pp 1–33.

  • Farooq M, Wahid A, Kobayashi NSMA, Fujita DBSM.A, Basra SMA (2009). Plant drought stress: effects, mechanisms and management. Sustain Agric Res 153–188.

  • Foley RC, Liang ZM, Singh KB (1997) Analysis of type 1 metallothionein cDNAs in Vicia faba. Plant Mol Biol 33:583–591

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Wang Y, Xu P, Zhang Z (2018) Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci 9:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghodke P, Khandagale K, Thangasamy A, Kulkarni A, Narwade N, Shirsat D, Randive P, Roylawar P, Singh I, Gawande SJ, Mahajan V (2020). Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PloS One 15 0237457.

  • Guo J, Sun B, He H, Zhang Y, Tian H, Wang B (2021) Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci 22:4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez JC, Amaro F, Martín-González A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6:48

    PubMed  PubMed Central  Google Scholar 

  • He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS (2016) Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biol 16:1–16

    Article  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH (2015) Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus. Front Plant Sci 6:989

    Article  PubMed  PubMed Central  Google Scholar 

  • Karkute SG, Gujjar RS, Rai A, Akhtar M, Singh M, Singh B (2018) Genome wide expression analysis of WRKY genes in tomato (Solanum lycopersicum) under drought stress. Plant Gene 13:8–17

    Article  CAS  Google Scholar 

  • Kepinska M, Milnerowicz H (2015) Capillary electrophoresis of metallothionein. J Metallomics Nanotechnol 3:15–22

    Google Scholar 

  • M Khalid HUI Nan KAYANI SI, Kexuan TANG, 2020 Diversity and versatile functions of metallothioneins produced by plants: a review Pedosphere 30 577 588

  • Khan SA, Li MZ, Wang SM, Yin HJ (2018) Revisiting the role of plant transcription factors in the battle against abiotic stress. Int J Mol Sci 19:1634

    Article  PubMed Central  Google Scholar 

  • Kim YO, Kang H (2018) Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice (Oryza sativa) and Arabidopsis thaliana. Biosci Biotechnol Biochem 82:1656–1665

    Article  CAS  PubMed  Google Scholar 

  • Krugman T, Chagué V, Peleg Z, Balzergue S, Just J, Korol AB, Nevo E, Saranga Y, Chalhoub B, Fahima T (2010) Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct Integr Genomic 10:167–186

    Article  CAS  Google Scholar 

  • Kumar S, Trivedi PK (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci 9:751

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Chapin III FS, Pons TL (2008). J Plant Ecol. Springer Science & Business Media.

  • Lata C, Muthamilarasan M, Prasad M (2015) Drought stress responses and signal transduction in plants. Elucidation of abiotic stress signaling in plants. Springer, New York, NY, pp 195–225

    Chapter  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Li LS, Meng YP, Cao QF, Yang YZ, Wang F, Jia HS, Wu SB, Liu XG (2016) Type 1 metallothionein (ZjMT) is responsible for heavy metal tolerance in Ziziphus jujuba. Biochem Mosc 8:565–573

    Article  Google Scholar 

  • Li Y, Xu M (2017) CCT family genes in cereal crops: a current overview. Crop J 5:449–458

    Article  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014a) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19–36

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wang L, Zhai H, Song X, He S, Liu Q (2014). A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweet potato. PloS One 9: 115128.

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lü S, Gu H, Yuan X, Wang X, Wu AM, Qu L, JY, (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16:177–191

    Article  PubMed  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367:507–519

    Article  CAS  Google Scholar 

  • Malekzadeh R, Shahpiri A (2017) Independent metal-thiolate cluster formation in C-terminal Cys-rich region of a rice type 1 metallothionein isoform. Int J Biol Macromol 96:436–441

    Article  CAS  PubMed  Google Scholar 

  • Marta Evans I, Gatehouse LN, Gatehouse JA, Robinson NJ, Croy RR (1990). A gene from pea (Pisum sativum L.) with homology to metallothionein genes FEBS Lett 262: 29–32.

  • Mekawy AMM, Assaha DV, Munehiro R, Kohnishi E, Nagaoka T, Ueda A, Saneoka H, (2018b). Characterization of type 3 metallothionein-like gene (OsMT-3a) from rice, revealed its ability to confer tolerance to salinity and heavy metal stresses Environ Exp Bot 147: 157–166.

  • Mekawy AMM, Assaha DV, Ueda A (2020) Constitutive overexpression of rice metallothionein-like gene OsMT-3a enhances growth and tolerance of Arabidopsis plants to a combination of various abiotic stresses. J Plant Res 133:429–440

    Article  PubMed  Google Scholar 

  • A Mierek-Adamska Z Znajewska A Goc DABROWSKA G, 2018 Molecular cloning and characterization of Ipomoea metallothioneins Turkish J Bot 42 247 256

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:1–28

    Article  Google Scholar 

  • Moloudi F, Navabpour S, Soltanloo H, Ramazanpour SS, Sadeghipour H (2013) Catalase and metallothionein genes expression analysis in wheat cultivars under drought stress condition. J Plant Mol Breed 1:54–68

    Google Scholar 

  • Nishiuchi S, Liu S, Takano T (2007) Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae. Biotechnol Lett 29:1301–1305

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M (2020) Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9:454

    Article  CAS  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7192

    Article  CAS  PubMed  Google Scholar 

  • R Benatti M Yookongkaew N Meetam M WJ Guo N Punyasuk S AbuQamar P Goldsbrough 2014 Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis New Phytol 202 940 951

  • Ren YR, Yang YY, Zhao Q, Zhang TE, Wang CK, Hao YJ, You CX, (2021). MdCIB1, an apple bHLH transcription factor, plays a positive regulator in response to drought stress. Environ Exp Bot 188: 104523.

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression new phytologist data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Banerjee A (2017). Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stress. Mechanism of plant hormone signaling under stress. pp 1:197–241.

  • Seo YJ, Park JB, Cho YJ, Jung C, Seo HS, Park SK, Nahm BH, Song JT (2010) Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants. Mol Cells 30:271–277

    Article  CAS  PubMed  Google Scholar 

  • Shahpiri A, Mohammadzadeh A (2018a) Mercury removal by engineered Escherichia coli cells expressing different rice metallothionein isoforms. Ann Microbiol 68:145–152

    Article  CAS  Google Scholar 

  • Shahpiri A, Mohammadzadeh A (2018b) Bioaccumulation of arsenic by engineered Escherichia coli cells expressing rice metallothionein isoforms. Curr Microbiol 75:1537–1542

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2016). Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants: an overview. Plant Metal Interaction. pp 263–283.

  • Sharma R, Sahoo A, Devendran R, Jain M (2014) Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 9:92900

    Article  Google Scholar 

  • Shi J, An HL, Zhang L, Gao Z, Guo XQ (2010) GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol 74:1–17

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sidik NM, Yazid RM, Dahlan DZM, Othman BA, Ismail I (2019) Accumulation of cadmium (Cd) in T1 transgenic tobacco seedlings expressing metallothionein gene from ‘Eleusine indica’. Aust J Crop Sci 13:599

    Article  CAS  Google Scholar 

  • Tamiru M, Undan JR, Takagi H, Abe A, Yoshida K, Undan JQ, Natsume S, Uemura A, Saitoh H, Matsumura H, Urasaki N (2015) A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Mol Biol 88:85–99

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirumoorthy N, Sunder AS, Kumar KM, Ganesh GNK, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. J Surg Oncol 9:1–7

    Google Scholar 

  • Todorova D, Talaat NB, Katerova Z, Alexieva V, Shawky BT (2016) Polyamines and brassinosteroids in drought stress responses and tolerance in plants. Water Stress Crop Plants Sustain Approach 2:608–627

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai CM, Weise SE, Ozersky P, Mockler TC, Michael TP, VanBuren R (2019) Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genet 15:1008209

    Article  Google Scholar 

  • Wang CT, Ru JN, Liu YW, Li M, Zhao D, Yang JF, Fu JD, Xu ZS (2018a) Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. Int J Mol Sci 19:3046

    Article  PubMed Central  Google Scholar 

  • Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS, Fu JD (2018b) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. Int J Mol Sci 19:2580

    Article  PubMed Central  Google Scholar 

  • Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Org Cult 125:387–398

    Article  CAS  Google Scholar 

  • Wang M, Zhang Y, Wang J, Wu X, Guo X (2007) A novel MAP kinase gene in cotton (Gossypium hirsutum L.), GhMAPK, is involved in response to diverse environmental stresses. BMB Rep 40:325–332

    Article  CAS  Google Scholar 

  • Wang NN, Xu SW, Sun YL, Liu D, Zhou L, Li Y, Li XB (2019) The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Sci Rep 9:1–13

    Google Scholar 

  • W Wituszyńska SZECHYŃSKA-HEBDA M.A.G.D.A.L.E.N.A., Sobczak M, Rusaczonek A, KOZŁOWSKA-MAKULSKA A.N.N.A Witoń D Karpiński S 2015 Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana Plant Cell Environ 38 315 330

  • Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH (2015) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS ONE 10:0136960

    Google Scholar 

  • Yang Q, Liu YJ, Zeng QY (2019) Overexpression of three orthologous glutathione S-transferases from Populus increased salt and drought resistance in Arabidopsis. Biochem Syst Ecol 83:57–61

    Article  CAS  Google Scholar 

  • Yang Y, Yu TF, Ma J, Chen J, Zhou YB, Chen M, Ma YZ, Wei WL, Xu ZS (2020) The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants. Int J Mol Sci 21:670

    Article  CAS  PubMed Central  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  • Yao PF, Li CL, Zhao XR, Li MF, Zhao HX, Guo JY, Cai Y, Chen H, Wu Q (2017) Overexpression of a tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci 8:625

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Lian C, Shen Z (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Liu Y, Cai H, Guo M, Chai M, She Z, Ye L, Cheng Y, Wang B, Qin Y (2020) The bZIP transcription factor GmbZIP15 negatively regulates salt-and drought-stress responses in soybean. Int J Mol Sci 21:7778

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Front Plant Sci 9:1426

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Liao C, Zhao S, Wang C, Guo Y (2017) The glycosyltransferase QUA1 regulates chloroplast-associated calcium signaling during salt and drought stress in Arabidopsis. Plant Cell Physiol 58:329–341

    CAS  PubMed  Google Scholar 

  • G Zhou Y Xu J Li YL JY Liu 2006 Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.) BMB Rep 39 595 606

Download references

Acknowledgements

The authors are highly thankful for the infrastructural support to the Director, CSIR-National Botanical Research Institute, Lucknow. We also express our gratitude to CSIR, New Delhi, for the funds under the project MLP0026. The authors are also thankful to CSIR, DST and UGC for providing research fellowships. CSIR-NBRI Manuscript Number: CSIR-NBRI_MS/2021/11/03.

Author information

Authors and Affiliations

Authors

Contributions

Sanoj Kumar conceptualized and performed experiments with formal analysis and investigation. Ankita Yadav wrote the original draft along with the data validation. Nasreen Bano was involved in software and writing—review and editing. Arvind Kumar Dubey, Rita Verma, Ankesh Pandey and Anil Kumar formally analysed and investigated the data. Sumit Bag critically reviewed the manuscript and provided guidance. Sudhakar Srivastava investigated and reviewed the manuscript. The whole work was designed and performed under the supervision of Indraneel Sanyal with funding acquisition, review and editing of manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Indraneel Sanyal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Yadav, A., Bano, N. et al. Genome-wide profiling of drought-tolerant Arabidopsis plants over-expressing chickpea MT1 gene reveals transcription factors implicated in stress modulation. Funct Integr Genomics 22, 153–170 (2022). https://doi.org/10.1007/s10142-021-00823-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-021-00823-7

Keywords

Navigation