Skip to main content
Log in

Enhancing Molecular Chain Entanglement and π-π Stacking Toward the Improvement of Shape Memory Performance of Polyimide

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermoplastic polyimides (PIs) with shape memory potential have received growing attention in recent years. In this work, high-performance thermoplastic PIs were fabricated by introducing PIs with chain rigidity (r-PI) into PI with chain flexibility (f-PI). The influences of molecular chain entanglement and π-π interactions on their thermomechanical and shape memory properties were investigated. The degree of molecular chain entanglement was quantitively characterized based on dynamic mechanical analysis (DMA). The π-π interactions were investigated in detail by X-ray diffraction (XRD) and UV-Vis spectroscopy. It was found that the entanglement density increased and π-π interactions became stronger with the introduction of r-PI into f-PI, leading to the improvement of shape recovery. Moreover, a broad and increased glass transition temperature (Tg) was achieved, endowing the PIs with multiple shape memory properties. The synergistic effects of increased entanglement density and enhanced π-π interactions were beneficial to regulating interchain interactions and thereby achieving high shape memory performance of the PIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeo, J. C.; Ong, X. Y.; Koh, J. J.; Kong, J.; Zhang, X.; Thitsartarn, W.; Li, Z.; He, C.; Dual-phase poly(lactic acid)/poly(hydroxybutyrate)-rubber copolymer as high-performance shape memory materials. ACS Appl. Polym. Mater. 2021, 3, 389–399.

    Article  CAS  Google Scholar 

  2. Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763.

    Article  CAS  Google Scholar 

  3. Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape mmory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

    Article  CAS  Google Scholar 

  4. Wang, H.; Liu, H.C.; Zhang, Y.; Xu, H.; Jin, B. Q.; Cao, Z. X.; Wu, H. T.; Huang, G. S.; Wu, J. R. A triple crosslinking design toward epoxy vitrimers and carbon fiber composites of high performance and multi-shape memory. Chinese J. Polym. Sci. 2021, 39, 736–744.

    Article  CAS  Google Scholar 

  5. Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 2016, 28, 4449–4454.

    Article  CAS  PubMed  Google Scholar 

  6. Pilate, F.; Toncheva, A.; Dubois, P.; Raquez, J. M. Shape-memory polymers for multiple applications in the materials world. Eur. Polym. J. 2016, 80, 268–294.

    Article  CAS  Google Scholar 

  7. Purwar, R.; Sachan, R. Thermoresponsive shape memory polymers for smart textiles. Adv. Funct. Prot. Text. 2020, 37–62.

    Google Scholar 

  8. Adiyan, U.; Larsen, T.; Zárate, J. J.; Villanueva, L. G.; Shea, H. Shape memory polymer resonators as highly sensitive uncooled infrared detectors. Nat. Commun. 2019, 10, 4518.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sattar, R.; Kausar, A.; Siddiq, M. Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chinese J. Polym. Sci. 2015, 33, 1313–1324.

    Article  CAS  Google Scholar 

  10. Xu, L.; Li, Z.; Lu, H.; Qi, X.; Dong, Y.; Dai, H. Z.; Md, Islam.; Fu, Y.; Ni, Q. Electrothermally-driven elongating-contracting film actuators based on two-way shape memory carbon nanotube/ethylenevinyl acetate composites. Adv. Mater. Technol. 2022, 7, 2101229.

    Article  CAS  Google Scholar 

  11. Ma, Y.; Meng, J.; Xia, L. Preparation and properties of HDPE/MVQ thermoplastic vulcanizate with low-temperature-resistant super toughness and shape memory properties. Eur. Polym. J. 2022, 179, 11530.

    Article  Google Scholar 

  12. Fujiwara, E.; Ishige, R.; Cerrón-Infantes, D. A.; Taublaender, M. J.; Unterlass, M. M.; Ando, S. Compression and thermal expansion behaviors of highly crystalline polyimide particles prepared from poly(amic acid) and mmonomer salts. Macromolecules 2021, 54, 8714–8725.

    Article  CAS  Google Scholar 

  13. Tanaka, K.; Ando, S.; Ishige, R. Spontaneous chain orientation of aromatic polyimides evolved during thermal imidization from shear-oriented glassy liquid crystalline precursors. Macromolecules 2019, 52, 5054–5066.

    Article  CAS  Google Scholar 

  14. Yang, Z.; Wang, Q.; Wang, T. Engineering hyperbranched polyimide membrane for shape memory and CO2 capture. J. Mater. Chem. A. 2017, 5, 13823–13833.

    Article  CAS  Google Scholar 

  15. Cooper, C.B.; Nikzad, S.; Yan, H.; Ochiai, Y.; Lai, J. C.; Yu, Z.; Chen, G; Kang, J.; Bao, Z. High energy density shape memory polymers using strain-induced supramolecular nanostructures. ACS Cent. Sci. 2021, 7, 1657–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan, W.; Lv, J.; Li, R.; Hu, J; Zeng, K.; Yang, G. Bio-based adenine-containing copolyimides with high switching temperatures and high-strain storage. Mol. Syst. Des. Eng. 2022, 7, 986–995.

    Article  CAS  Google Scholar 

  17. Li, X.; Yang, Y.; Zhang, Y.; Wang, T.; Yang, Z.; Wang, Q.; Zhang, X. Dual-method molding of 4D shape memory polyimide ink. Mater. Design. 2020, 191, 108606.

    Article  CAS  Google Scholar 

  18. Gao, H.; Li, J.; Xie, F.; Liu, Y.; Leng, J. A novel low colored and transparent shape memory copolyimide and its durability in space thermal cycling environments. Polymer 2018, 156, 121–127.

    Article  CAS  Google Scholar 

  19. Wang, C. O.; Zhai, L.; Mo, S.; Liu, Y.; Gao, M. Y.; Jia, Y.; He, M. H.; Fan, L. Effect of aggregation structure on thermal expansion behavior of polyimide films with different thickness. Chinese J. Polym. Sci. 2022, 40, 1651–1661.

    Article  CAS  Google Scholar 

  20. Xiao, P.; He, X.; Zheng, F.; Lu, Q. Super-heat resistant, transparent and low dielectric polyimides based on spirocyclic bisbenzoxazole diamines with Tg > 450 °C. Polym. Chem. 2022, 13, 3660–3669.

    Article  CAS  Google Scholar 

  21. Ke, H; Zhao, L.; Zhang, X.; Qiao, Y.; Wang, G.; Wang, X. Performance of high-temperature thermosetting polyimide composites modified with thermoplastic polyimide. Polym. Test. 2020, 90, 106746.

    Article  CAS  Google Scholar 

  22. Li, M.; Guan, Q.; Dingemans, T. J. High-temperature shape memory behavior of semi-crystalline polyamide thermosets. ACS Appl. Mater. Interfaces 2018, 10, 19106–19115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Z.; Zhang, Y.; Li, S.; Zhang, X.; Wang, T.; Wang, Q. Fully closed-loop recyclable thermosetting shape memory polyimide. ACS Sustain. Chem. Eng. 2020, 8, 18869–18878.

    Article  CAS  Google Scholar 

  24. Kong, D.; Li, J.; Guo, A.; Zhang, X.; Xiao, X. Self-healing high temperature shape memory polymer. Eur. Polym. J. 2019, 120, 109279.

    Article  Google Scholar 

  25. Wang, Q.; Bai, Y.; Chen, Y.; Ju, J.; Zheng, F.; Wang, T. High performance shape memory polyimides based on π-π interactions. J. Mater. Chem. A. 2015, 3, 352–359.

    Article  CAS  Google Scholar 

  26. Yoonessi, M.; Shi, Y.; Scheiman, D. A.; Lebron-Colon, M.; Tigelaar, D. M.; Weiss, R. A.; Meador, M. A. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 2012, 6, 7644–7655.

    Article  CAS  PubMed  Google Scholar 

  27. Koerner, H.; Strong, R. J.; Smith, M. L; Wang, D. H; Tan, L. S.; Lee, K. M.; White, T. J.; Vaia, R. A. Polymer design for high temperature shape memory: low crosslink density polyimides. Polymer 2013, 54, 391–402.

    Article  CAS  Google Scholar 

  28. Xiao, X.; Kong, D.; Qiu, X.; Zhang, W.; Zhang, F.; Liu, L.; Liu, Y.; Zhang, S.; Hu, Y.; Leng, J. Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 2015, 48, 3582–3589.

    Article  CAS  Google Scholar 

  29. Yang, Z.; Chen, Y.; Wang, Q.; Wang, T. High performance multiple-shape memory behaviors of poly(benzoxazole-co-imide)s. Polymer 2016, 88, 19–28.

    Article  CAS  Google Scholar 

  30. Zhang, Y.; Mushtaq, N.; Fang, X.; Chen, G. In situ FTIR analysis for the determination of imidization degree of polyimide precursors. Polymer 2022, 238, 124416.

    Article  CAS  Google Scholar 

  31. Yao, J.; Ma, S.; Zhang, J.; Wang, Y.; Wang, C.; Zhou, H.; Chen, C.; Liu, G. Multiple shape memory effects of polyimide nanocomposites based on octa(aminophenyl) silsequioxanes. Express Polym. Lett. 2021, 15, 433–444.

    Article  CAS  Google Scholar 

  32. Li, Y.; Zhuo, H.; Chen, H.; Chen, S. Novel photo-thermal staged-responsive supramolecular shape memory polyurethane complex. Polymer 2019, 179, 121671.

    Article  CAS  Google Scholar 

  33. Zhao, Q.; Qi, H.J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49, 79–120.

    Article  Google Scholar 

  34. Yi, J.; Liu, C.; Tian, Y.; Wang, K.; Liu, X.; Luo, L. Improving dimensional stability at high temperature and toughness of polyimide films via adjustable entanglement density. Polymer 2021, 218, 123488.

    Article  CAS  Google Scholar 

  35. Shi, Y.; Wang, Z.; Shi, Y.; Zhu, S.; Zhang, Y.; Jin, J. Synergistic design of enhanced π-π interaction and decarboxylation cross-linking of polyimide membranes for natural gas separation. Macromolecules 2022, 55, 2970–2982.

    Article  CAS  Google Scholar 

  36. Zhuang, Y.; Liu, X.; Gu, Y. Molecular packing and properties of poly(benzoxazole-benzimidazole-imide) copolymers. Polym. Chem. 2012, 3, 1517–1525.

    Article  CAS  Google Scholar 

  37. Ma, Y.; Hu, C.; Guo, H.; Fan, L.; Yang, S.; Sun, W. H. Structure effect on transition mechanism of UV-visible absorption spectrum in polyimides: a density functional theory study. Polymer 2018, 148, 356–369.

    Article  CAS  Google Scholar 

  38. Hao, X.; Kaschta, J.; Liu, X.; Pan, Y.; Schubert, D. W. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 2015, 80, 38–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Engineering Research Center for Clean Production of Textile Printing and Dyeing, Ministry of Education (No. FZYR2021001), Shanghai Pujiang Program (No. 19PJ1400400) and Shanghai Key Laboratory of Lightweight Composite (No. 2232019A4-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ying Zhang.

Additional information

Conflict of Interests

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JQ., Li, WS., Zhang, WT. et al. Enhancing Molecular Chain Entanglement and π-π Stacking Toward the Improvement of Shape Memory Performance of Polyimide. Chin J Polym Sci 41, 1261–1268 (2023). https://doi.org/10.1007/s10118-023-2911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2911-9

Keywords

Navigation