Skip to main content

Advertisement

Log in

Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Photobiomodulation (PBM) describes light-induced photochemical reactions achieved by the application of red or near infrared lasers/LED light with low energy densities. This noninvasive and painless method has been used in some clinical areas but controversial outcomes demand a skeptical look for its promising and potential effects. In this detailed in vitro study, the osteoblast cells were irradiated with 635 and 809 nm diode lasers at energy densities of 0.5, 1, and 2 J/cm2. Cell viability, proliferation, bone formation, and osteoblast differentiation were evaluated by methylthiazole tetrazolium (MTT) assay, Alamar Blue assay, acridine orange/propidium iodide staining, alkaline phosphatase (ALP) activity, Alizarin red staining, and reverse-transcription polymerase chain reaction (RT-PCR) to test the expression of collagen type I, ALPL, and osteocalcin. The results indicate that studied energy doses have a transient effect (48 h after laser irradiation) on the osteoblast viability and proliferation. Similarly, laser irradiation did not appear to have any effect on ALP activity. These results were confirmed by RT-PCR analysis of osteoblast markers. This study suggests that several irradiation parameters and variations in the methods should be clearly established in the laboratory before laser treatment becomes a postulated application for bone tissue regeneration in clinical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woodruff LD, Bounkeo J, Brannon WM, Dawes KS, Barham CD, Waddell DL, Enwemeka CS (2004) The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg 22:241–247

    Article  PubMed  Google Scholar 

  2. Silva JP, Silva MA, Almeida APF, Junior IL, Matos AP (2010) Laser therapy in the tissue repair process: a literature review. Photomed Laser Surg. doi:10.1089/pho.2008.2372

    Google Scholar 

  3. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–40

    Article  CAS  PubMed  Google Scholar 

  4. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–49. doi:10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  5. Basford JR (1995) Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16:331–42

    Article  CAS  PubMed  Google Scholar 

  6. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–54

    Article  CAS  PubMed  Google Scholar 

  7. Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–7

    Article  PubMed  Google Scholar 

  8. Nicolau RA, Jorgetti V, Rigau J, Pacheco MTT, Dos Reis LM, Zângaro RA (2003) Effect of low-power GaAIAs laser (660 nm) on bone structure and cell activity: an experimental animal study. Lasers Med Sci 18:89–94. doi:10.1007/s10103-003-0260-z

    Article  Google Scholar 

  9. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102

    Article  CAS  PubMed  Google Scholar 

  10. Saito S, Shimizu N (1997) Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop 111:525–532. doi:10.1016/S0889-5406(97)70152-5

    Article  CAS  PubMed  Google Scholar 

  11. Dörtbudak O, Haas R, Mailath-Pokorny G (2002) Effect of low-power laser irradiation on bony implant sites. Clin Oral Implants Res 13:288–292

    Article  PubMed  Google Scholar 

  12. Ebrahimi T et al (2012) The influence of low-intensity laser therapy on bone healing. J Dent 9(4):238–248

    CAS  Google Scholar 

  13. Nicolau RA, Martinez MS, Rigau J, Tomas J (2004) Effect of low power 655 nm diode laser irradiation on the neuromuscular junctions of the mouse diaphragm. Lasers Surg Med 34(3):277–84

    Article  PubMed  Google Scholar 

  14. Khadra M, Kasem N, Haanaes HR, Ellingsen JE, Lyngstadaas SP (2004) Enhancement of bone formation in rat calvarial bone defects using low-level laser therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 97(6):693–700

    Article  PubMed  Google Scholar 

  15. Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–96

    Article  PubMed  Google Scholar 

  16. Ribeiro DA, Matsumoto MA (2008) Low-level laser therapy improves bone repair in rats treated with anti-inflammatory drugs. J Oral Rehabil 35(12):925–33

    Article  CAS  PubMed  Google Scholar 

  17. Lopes CB, Pinheiro ALB, Sathaiah S et al (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25(2):96–101

    Article  CAS  PubMed  Google Scholar 

  18. Lopes CB, Pinheiro ALB, Sathaiah S et al (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  19. Weber JB, Pinheiro AL, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24(1):38–44

    Article  PubMed  Google Scholar 

  20. Torres CS, Santos JN, Monteiro JSC et al (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  21. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309

    Article  CAS  PubMed  Google Scholar 

  22. Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys. doi:10.1088/1054-660X/25/9/095602

    Google Scholar 

  23. Chen AC-H, Huang Y-Y, Arany PR, Hamblin MR (2009) Role of reactive oxygen species in low level light therapy. 716502–716502–11. doi: 10.1117/12.814890

  24. Renno AC, McDonnell PA, Parizotto NA, Laakso EL (2007) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25:275–280

    Article  CAS  PubMed  Google Scholar 

  25. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D et al (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120:112–7

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz-Filho HO, Reimer AC, Marcantonio C, Marcantonio E, Marcantonio RAC (2011) Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures. Lasers Med Sci 26:539–43. doi:10.1007/s10103-011-0902-5

    Article  PubMed  Google Scholar 

  27. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4:3–14

    Article  CAS  PubMed  Google Scholar 

  28. Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–6. doi:10.1089/pho.2005.23.161

    Article  CAS  PubMed  Google Scholar 

  29. Pagin MT, de Oliveira FA, Oliveira RC, Sant’Ana ACP, de Rezende MLR, Greghi SLA, Damante CA (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29:55–9. doi:10.1007/s10103-012-1238-5

    Article  PubMed  Google Scholar 

  30. Bloise N, Ceccarelli G, Minzioni P et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt. doi:10.1117/1.JBO.18.12.128006

  31. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ (1992) Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 7:683–692

    Article  CAS  PubMed  Google Scholar 

  32. Hübler R, Blando E, Gaião L et al (2010) Effects of low-level laser therapy on bone formed after distraction osteogenesis. Lasers Med Sci 25:213. doi:10.1007/s10103-009-0691-2

    Article  PubMed  Google Scholar 

  33. Ré Poppi R, Da Silva AL, Nacer RS et al (2011) Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26:515. doi:10.1007/s10103-010-0867-9

    Article  PubMed  Google Scholar 

  34. Basso FG, Turrioni APS, Almeida LF, Soares DG, Oliveira CF, Hebling J, de Souza Costa CA (2016) Nutritional deprivation and LPS exposure as feasible methods for induction of cellular—a methodology to validate for vitro photobiomodulation studies. J Photochem Photobiol B Biol 159:205–210. doi:10.1016/j.jphotobiol.2016.04.001

    Article  CAS  Google Scholar 

  35. Mark P, Kleinsorge M, Gaebel R, Lux C, Al. E (2013) Human mesenchymal stem cells display reduced expression of CD105 after culture in serum-free medium. Stem Cells Int. 1–8

  36. Zhang C, Li S, Chen Y, Jiang Y, Chen P, Wang C, Fu X, Kang H, Shen B, Liang J (2014) Stimulative effects of low intensity He-Ne laser irradiation on the proliferative potential and cell-cycle progression of myoblasts in culture. doi: 10.1155/2014/205839

  37. Nowak KC, McCormack M, Koch RJMD (2000) The effect of superpulsed carbon dioxide laser energy on keloid and normal dermal fibroblast secretion of growth factors: a serum-free study. Plast Reconstr Surg 105(6):2019–2048

    Article  Google Scholar 

  38. Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38(4):332–336. doi:10.1002/lsm.20298

    Article  PubMed  Google Scholar 

  39. Oliveira CF et al (2010) Increased viability of odontoblast-like cells subjected to low-level laser irradiation. Laser Phys 20(7):1659–1666. doi:10.1134/S1054660X10130153

    Article  CAS  Google Scholar 

  40. Almeida-Lopes L, Rigau J, Zângaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184. doi:10.1002/lsm.1107

    Article  CAS  PubMed  Google Scholar 

  41. Ferreira MP, Ferrari RA, Gravalos ED, Martins MD, Bussadori SK, Gonzalez DA, Fernandes KP (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901

    Article  PubMed  Google Scholar 

  42. Tabatabaei FS et al (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys 25(9):95602. doi:10.1088/1054-660X/25/9/095602, IOP Publishing

    Article  Google Scholar 

  43. Oliveira CF, Basso FG, Lins EC et al (2011) In vitro effect of low-level laser on odontoblast-like cells. Laser Phys Lett 8:155–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grant (113Z059) of the Scientific and Research Council of Turkey (TUBITAK). The cell culture experiments were performed at Boğaziçi University Biomedical Engineering Institute Biomaterials laboratory, which was supported by Boğaziçi University Research Fund with the grant number 6701. The authors also would like to thank to Assoc.Dr. Bora Garipcan for kindly supplying our group the opportunity to use the facilities of Biomaterials laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Bölükbaşı Ateş.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was supported by grant (113Z059) of the Scientific and Research Council of Turkey (TUBITAK).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bölükbaşı Ateş, G., Ak Can, A. & Gülsoy, M. Investigation of photobiomodulation potentiality by 635 and 809 nm lasers on human osteoblasts. Lasers Med Sci 32, 591–599 (2017). https://doi.org/10.1007/s10103-017-2153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2153-6

Keywords

Navigation