Skip to main content

Advertisement

Log in

Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate the effects of LLLT (660- and 808-nm wavelengths) on the process of repairing bone defects induced in the femurs of female rats submitted to ovariectomy. Bilateral ovariectomies were performed on 18 female Wistar rats, which were divided into control and irradiated groups after the digital analysis of bone density showed decreased bone mass and after standardized drilling of the femurs. The irradiated groups received 133 J/cm2 of AsGaAl (660-nm) and InGaAlP (880-nm) laser radiation. The animals were euthanized on days 14 and 21 after the bone defects were established. Detailed descriptive histological evaluations were performed, followed by semi-quantitative histomorphometry. The results from days 14 and 21 showed that the irradiated groups presented increased density of osteoblasts, fibroblasts, and immature osteocytes on the tissue surface compared with the control (non-irradiated) groups (p < 0.05). Additionally, inflammatory infiltrate evaluations showed that LLLT decreased the accumulation of leukocytes when compared to the control treatment (p < 0.05). We concluded that, in our experimental model, both wavelengths (660-nm and 880-nm) inhibited the inflammatory process and induced the proliferation of cells responsible for bone remodeling and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dobbs MB, Buckwalter J, Saltzman C (1999) Osteoporosis: the increasing role of the orthopaedist. Iowa Orthop J 19:43–52

    PubMed  CAS  Google Scholar 

  2. Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10:E1

    Article  PubMed  CAS  Google Scholar 

  3. Sha M, Guo Z, Fu J, Li J, Yuan CF, Shi L, Li SJ (2009) The effects of nail rigidity on fracture healing in rats with osteoporosis. Acta Orthop 80:135–138

    Article  PubMed  Google Scholar 

  4. Siris ES, Selby PL, Saag KG, Borgström F, Herings RM, Silverman SL (2009) Impact of osteoporosis treatment adherence on fracture rates in North America and Europe. Am J Med 122(2 Suppl):S3–13

    Article  PubMed  Google Scholar 

  5. Lorrain J, Paiement G, Chevrier N, Lalumière G, Laflamme GH, Caron P, Fillion A (2003) Population demographics and socioeconomic impact of osteoporotic fractures in Canada. Menopause 10:228–234

    Article  PubMed  Google Scholar 

  6. Kolios L, Sehmisch S, Daub F, Rack T, Tezval M, Stuermer KM, Stuermer EK (2009) Equol but not genistein improves early metaphyseal fracture healing in osteoporotic rats. Planta Med 76:459–465

    Article  Google Scholar 

  7. Cooper C, Westlake S, Harvey N, Dennison E (2009) Developmental origins of osteoporotic fracture. Adv Exp Med Biol 639:217–236

    Article  PubMed  CAS  Google Scholar 

  8. Torres CS, dos Santos JN, Monteiro JS, Amorim PG, Pinheiro AL (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  9. Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39:788–796

    Article  PubMed  Google Scholar 

  10. Márquez Martínez ME, Pinheiro AL, Ramalho LM (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317

    Article  PubMed  Google Scholar 

  11. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430

    PubMed  CAS  Google Scholar 

  12. Sakakura CE, Giro G, Gonçalves D, Pereira RM, Orrico SR, Marcantonio E Jr (2006) Radiographic assessment of bone density around integrated titanium implants after ovariectomy in rats. Clin Oral Implants Res 17:134–138

    Article  PubMed  Google Scholar 

  13. Canettieri AC, Colombo CE, Chin CM, Faig-Leite H (2009) Femur bone repair in ovariectomized rats under the local action of alendronate, hydroxyapatite and the association of alendronate and hydroxyapatite. Int J Exp Pathol 90:520–526

    Article  PubMed  CAS  Google Scholar 

  14. Denadai AS, de Carvalho PT, dos Reis FA, Belchior AC, Pereira DM, Dourado DM, Silva IS, de Oliveira LV (2009) Morphometric and histological analysis of low-power laser influence on bone morphogenetic protein in bone defects repair. Lasers Med Sci 24:689–695

    Article  PubMed  Google Scholar 

  15. Leonel ECF, Porciúncula HF, Sobrinho JA, Ramalho LTO, Mangilli PD, Rapoport A (2004) The action of the castor bean polymer during the bone neoformation. Acta Cir Bras 19:342–350

    Article  Google Scholar 

  16. AboElsaad NS, Soory M, Gadalla LM, Ragab LI, Dunne S, Zalata KR, Louca C (2009) Effect of soft laser and bioactive glass on bone regeneration in the treatment of bone defects (an experimental study). Lasers Med Sci 24:527–533

    Article  PubMed  Google Scholar 

  17. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephol 3:S131–S139

    Article  CAS  Google Scholar 

  18. Lill CA, Hesseln J, Schlegel U, Eckhardt C, Goldhahn J, Schneider E (2003) Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthopaedic Res 21:836–842

    Article  CAS  Google Scholar 

  19. Pinheiro ALB, Oliveira MG, Martins PPM, Ramalho LMP, Oliveira MAM, Junior AN, Nicolau RA (2001) Biomodulatory effects of LLLT on bone regeneration. Laser Therapy 13:73–79

    Google Scholar 

  20. Pinheiro ALB, Limeira Júnior FDA, Gerbi MLM, Ramalho LMP, Marzola C, Ponzi EAC (2003) Effect of low level laser therapy on the repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181

    Article  PubMed  Google Scholar 

  21. Diniz JS, Nicolau RA, de Melo ON, Magalhães FC, Oliveira Pereira RD, Serakides R (2009) Effect of low-power gallium-aluminum-arsenium laser therapy (830 nm) in combination with bisphosphonate treatment on osteopenic bone structure: an experimental animal study. Lasers Med Sci 24:347–352

    Article  PubMed  Google Scholar 

  22. Loevschall H, Arenholt-Bindslev D (1994) Effect of low level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354

    Article  PubMed  CAS  Google Scholar 

  23. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod 4:3–14

    Article  Google Scholar 

  24. Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–54

    Article  PubMed  CAS  Google Scholar 

  25. Nicolau RA, Jorgetti V, Rigau J, Pacheco MT, dos Reis LM, Zangaro RA (2003) Effect of low-power GaAlAs laser (660 nm) on bone structure and cell activity an experimental animal study. Lasers Med Sci 18:89–94

    Article  Google Scholar 

  26. Dörtbudak O, Hass R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res 11:540–545

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo de Tarso Camilo Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ré Poppi, R., Da Silva, A.L., Nacer, R.S. et al. Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26, 515–522 (2011). https://doi.org/10.1007/s10103-010-0867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-010-0867-9

Keywords

Navigation