Skip to main content

Advertisement

Log in

Assessment of the LED phototherapy on femoral bone defects of ovariectomized rats: a Raman spectral study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Osteoporosis is a disease characterized by the reduction of bone mineral density. LED wavelengths seem to have similar photo-stimulating effects to laser light. The aim of this study was to assess the Raman shifts: ∼960 (phosphate hydroxyapatite), ∼1,070 (carbonate hydroxyapatite), and ∼1,454 cm −1 (lipids and proteins) on bone defects of ovariectomized rats treated or not with LED phototherapy (LED-PT). Thirty female rats were divided into four groups (Basal, OVX, OVX+Clot, and OVX+Clot+LED), then subdivided into two subgroups (15 and 30 days after surgery). Osteoporosis induction by ovariectomy (OVX) was performed in all groups, except for the normal basal group. Following development of osteoporosis, one surgical bone defect (5 mm2) was created on the femur of each animal. Defects were irradiated with LED light (λ = 850 ± 10 nm, P = 150 mW, CW, Ф = 0.5 cm2, 20.4 J/cm2 per session, t = 128 s, 163.2 J/cm2 per treatment) at 48 h interval during 2 weeks. Raman measurements were taken at the surface of the defects 30 days after surgery. Significant difference between groups Basal, OVX+Clot, and OVX+Clot+LED for the peaks at ∼960 (p ≤ 0.001; 15 and 30 days), ∼1,070 (p ≤ 0.001; 15 and 30 days), and ∼1,450 cm−1 (p = 0.002; 15 days; p = 0.004; 30 days) were detected. In addition, statistical differences were obtained between groups OVX, OVX+Clot, and OVX+Clot+LED for these same peaks at all time points (p ≤ 0.001). At 15 and 30 days, there were statistical differences between groups OVX+Clot and OVX+Clot+LED for the peaks at ∼960 (p ≤ 0.001), ∼1,070 (p ≤ 0.001; p = 0.003), and ∼1,450 cm−1 (p ≤ 0.001; p = 0.002). The results of this study are indicative that infrared LED-PT improved the deposition of HA on bone defects of ovariectomized rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G, Kanis J, Nordin BE, Barrett-Connor E, Black D, Bonjour JP, Dawson-Hughes B, Delmas PD, Dequeker J, Ragi Eis S, Gennari C, Johnell O, Johnston CC Jr, Lau EM, Liberman UA, Lindsay R, Martin TJ, Masri B, Mautalen CA, Meunier PJ, Khaltaev N (1999) Interin report and recommendations of the word health Organizacion task-force for osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara CM, Lynch NA, Nicklas BJ, Ryan AS, Berman DM (2002) Differences in adipose tissue metabolism between postmenopausal and perimenopausal women. J Clin Endocrinol Metab 87:4166–4170

    Article  CAS  PubMed  Google Scholar 

  3. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, Kitajima I, Semba I, Hirasawa Y (1999) Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol 68:197–202

    Article  CAS  PubMed  Google Scholar 

  4. Riggs BL (1990) A new option for treating osteoporosis. N Engl J Med 323:73–79

    Article  Google Scholar 

  5. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:3–11

    Article  Google Scholar 

  6. Pinheiro ALB, Limeira FA Jr, Gerbi MMEM (2003) Effect of low level laser therapy on the repair of bone defects grafted with inorganic bovine bone. Braz Dent J 14:177–181

    Article  PubMed  Google Scholar 

  7. Gerbi MMEM, Pinheiro ALB, Ramalho LMP, Marzola C, Limeira FA Jr, Ponzi EAC, Soares AO, Carvalho LC, Lima HV, Gonçalves TO (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388

    Article  PubMed  Google Scholar 

  8. Weber JBB, Pinheiro ALB, Oliveira MG, Ramalho LMP (2006) Laser therapyimproves healing of bone defects submitted to autogenous bone graft. Photomed Laser Surg 24:38–44

    Article  PubMed  Google Scholar 

  9. Gerbi MMEM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317

    Article  Google Scholar 

  10. Torres CS, Santos JN, Monteiro JSC, Amorim PG, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377

    Article  PubMed  Google Scholar 

  11. Pinheiro ALB, Gerbi MMEM, Ponzi EAC, Ramalho LMP, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Noia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26:167–174

    Article  CAS  PubMed  Google Scholar 

  12. Gerbi MMEM, Marques AMC, Ramalho LMP, Ponzi EAC, Carvalho CM, Santos RC, Oliveira PC, Noia N, Pinheiro ALB (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60

    Article  PubMed  Google Scholar 

  13. Pinheiro ALB, Gerbi MMEM, Limeira FA Jr, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Noia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240

    Article  PubMed  Google Scholar 

  14. Whelan HT, Smits RL, Buchmann EV, Whelan NT, Turner SG, Margolis DA, Cevenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Philippi AF, Graf WR, Hodgson B, Gould L, Kane M, Chen G, Caviness J (2001) Effect of NASA light-emitting diode (LED) irradiation on wound healing. J Clin Laser Med Surg 19:305–314

    Article  CAS  PubMed  Google Scholar 

  15. Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M (2003) Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 21:67–74

    Article  PubMed  Google Scholar 

  16. Al-Watban FAH, Andres BL (2003) Polychromatic LED therapy in burn healing of non-diabetic and diabetic rats. Laser Med Surg 21:249–258

    Article  Google Scholar 

  17. Corazza AV, Jorge J, Kurachi C, Bagnato VS (2007) Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed Laser Surg 25:102–106

    Article  PubMed  Google Scholar 

  18. Lopes CB, Pacheco MTT, Silveira L Jr, Duarte J, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wireosteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130

    Article  CAS  PubMed  Google Scholar 

  19. Lopes CB, Pinheiro ALB, Sathaiah S, Duarte J, Martins MC (2005) Infrared laser light reduces loading time of dental implants: a Ramanspectroscopy study. Photomed Laser Surg 23:27–31

    Article  CAS  PubMed  Google Scholar 

  20. Oliveira AP, Bitar RA, Silveira L Jr, Zangaro RA, Martin AA (2006) Nearinfrared Raman spectroscopy for oral carcinoma diagnosis. Photomed Laser Surg 24:348–353

    Article  CAS  PubMed  Google Scholar 

  21. Silveira L Jr, Sathaiah S, Zângaro RA, Pacheco MTT, Chavantes MC, Pasqualucci CA (2003) Near infrared raman spectroscopyof human coronary arteries: histopathological classification based on Mahalanobis distance. J Clin Laser Med Surg 21:203–208

    Article  PubMed  Google Scholar 

  22. Nogueira GV, Silveira L Jr, Martin AA, Zangaro RA, Pacheco MTT, Chavantes MC, Pasqualucci CA (2005) Raman spectroscopystudy of atherosclerosis in human carotid artery. J Biomed Opt. doi:10.1117/1.1908129

  23. Wood BR, Caspers P, Puppels GJ, Pandiancherri S, McNaughton D (2007) Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387:1691–1703

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Heredia MA, Sohier J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615

    Article  CAS  PubMed  Google Scholar 

  25. Bozzini B, Carlino P, D'Urzo L, Pepe V, Mele C, Venturo F (2008) An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci Mater Med 19:3443–3453

    Article  CAS  PubMed  Google Scholar 

  26. Lopes CB, Pinheiro ALB, Sathaiah S, Silva NS, Salgado MC (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning electronic microscopy study in rabbits. Photomed Laser Surg 25:96–101

    Article  CAS  PubMed  Google Scholar 

  27. Morris MD, Stewart S, Tarnowski CP, Shea D, Franceschi R, Wang D, Ignelzi MA Jr, Wang W, Keller ET, Lin DL, Goldstein SA, Taboas JM (2002) Early mineralization of normal and pathologic calvaria asrevealed by Raman spectroscopy. SPIE Proc 4614:28–39

    Article  CAS  Google Scholar 

  28. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268

    Article  CAS  PubMed  Google Scholar 

  29. Schulmerich MV, Cole JH, Dooley KA, Morris MD, Kreider JM, Goldstein SA, Srinivasan S, Pogue BW (2008) Non invasive Raman tomographic imaging of canine bone tissue. J Biomed Opt. doi:10.1117/1.2904940

  30. Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L Jr (2010) Effects of laser photherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95:1041–1047

    Article  PubMed  Google Scholar 

  31. Shen J, Fan L, Yang J, Shen AG, Hu JM (2010) A longitudinal Raman microspectroscopic study of osteoporosis induced by spinal cord injury. Osteoporos Int 21:81–87

    Article  CAS  PubMed  Google Scholar 

  32. Renno AC, Moura FM, Santos NS, Tirico RP, Bossini PS, Parizotto NA (2006) Effects of 830-nm laser light on preventing bone loss after ovariectomy. Photomed Laser Surg 24:642–645

    Article  PubMed  Google Scholar 

  33. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  34. Whelan HT, Buchmann EV, Whelan NT, Turnerla SG, Cavenini V, Stinson H, Ignatius R, Martin T, Cwiklinski J, Meyer GA, Hogdson B, Gould L, Kane M, Chen G, Caviness J (2001) NASA light emitting diode medical applications: from deep space to deepsea. Space Technology and Applications International Forum. 35–45. http://www.google.nl/patents/US6986739

  35. Pinheiro ALB, Gerbi ME (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178

    Article  CAS  PubMed  Google Scholar 

  36. Pinheiro ALB, Soares LG, Cangussú MC, Santos NR, Barbosa AF, Silveira L Jr (2012) Effects of LED phototherapy on bone defects grafted with MTA, bone morphogenetic proteins and guided bone regeneration: a Raman spectroscopic study. Lasers Med Sci 27:903–916

    Article  PubMed  Google Scholar 

  37. Faibish D, Ott MS, Boskey AL (2006) Mineral changes in osteoporosis a review. Clin Orthop Relat Res 443:28–38

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sartori AR, Moreira JA, Santos AMM, Cintra DEC, Sartori LR, Baraúna MA, Canto RST (2008) Bone repair process in normal and osteopenic female rats' tibiae: a comparative study. Acta Ortop Bras 1:37–40

    Article  Google Scholar 

  39. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  PubMed Central  PubMed  Google Scholar 

  40. Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MTT, Henry MM, Buchmann EV, Connelly MP, Dovi JV, Ling Liang H, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and experimental applications of NIR-LED photobiomodulation. Photomed Laser Surg 24:121–128

    Article  CAS  PubMed  Google Scholar 

  41. Lanzafame RJ, Stadler I, Whelan HT (2002) NASA LED photoradiation influences nitric oxide and collagen production in wounded rats. Lasers Surg Med 14:12

    Google Scholar 

  42. Tachiara R, Farinelli WA, Anderson R (2002) Low intensity light-induced vasodilation in vivo. Lasers Surg Med 14:11

    Google Scholar 

  43. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC (2003) Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 18:95–99

    Article  PubMed  Google Scholar 

  44. Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435

    Article  PubMed  Google Scholar 

  45. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T (2001) Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28:80–86

    Article  CAS  PubMed  Google Scholar 

  46. He YX, Zhang G, Pan XH, Liu Z, Zheng LZ, Chan CW, Lee KM, Cao YP, Li G, Wei L, Hung LK, Leung KS, Qin L (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48:1388–1400

    Article  PubMed  Google Scholar 

  47. Smith KC (2005) Laser (and LED) therapy is phototherapy. Photomed Laser Surg 23:78–80

    Article  PubMed  Google Scholar 

  48. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–192

    Article  CAS  PubMed  Google Scholar 

  49. Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16

    Article  CAS  PubMed  Google Scholar 

  50. Durão S, Gomes PS, Silva-Marques J, Fonseca H, Carvalho J, Duarte JA, Fernandes MH (2012) Bone regeneration in osteoporotic conditions: healing of subcritical size calvarial defects in the ovariectomized rat. Int J Oral Maxillofac Implants 27:1400–1408

    PubMed  Google Scholar 

  51. Luize DS, Bosco AF, Bonfante S, de Almeida JM (2008) Influence of ovariectomy on healing of autogenous bone block grafts in the mandible: a histomorphometric study in an aged rat model. Int J Oral Maxillofac Implants 23(2):207–214

    PubMed  Google Scholar 

  52. Wronski T, Cintrón M, Dann L (1988) Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43:179–183

    Article  CAS  PubMed  Google Scholar 

  53. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16:129–138

    Article  Google Scholar 

  54. Lelovas P, Xanthos T, Thoma S, Lyritis G, Dontas I (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing the financial support for this project.

Conflict of interest

The authors received a grant from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a government research agency, but have full control of all primary data and agree to allow the journal to review their data if requested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. B. Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aciole, J.M.d.S., de Castro, I.C.V., Soares, L.G.P. et al. Assessment of the LED phototherapy on femoral bone defects of ovariectomized rats: a Raman spectral study. Lasers Med Sci 29, 1269–1277 (2014). https://doi.org/10.1007/s10103-013-1509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1509-9

Keywords

Navigation