Skip to main content
Log in

Strategies in fed-batch cultivation on the production performance of Lactobacillus salivarius I 24 viable cells

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The potential use of fed-batch cultivation (FBC) for improvement of the production of Lactobacillus salivarius I 24 biomass for subsequent use as probiotics was studied using a 2-L stirredtank bioreactor. Three different constant feeding rates (0.1, 0.05, and 0.033 L/h) were applied in FBCs and their effect on carbon metabolism was evaluated. The carbon flux for cell built-up with reduction in lactic acid synthesis was observed in the fed-batch as compared to the batch cultivation mode. The viable cell number obtained in the constant FBC (CFBC) operated at a feeding rate of 0.05 L/h was 8 times higher (10.7×1010 CFU/mL) than that recorded in the batch cultivation. This gave the viable cell yield based on glucose consumed for CFBC of 26 times higher (11.3×1012 CFU/gGlucose) than the batch cultivation. This study demonstrated CFBC, which is simple with minimal use of process control equipment, has an industrial potential for improvement of probiotic production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JAF. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Compr. Rev. Food. Sci. F. 9: 292–302 (2010)

    Article  CAS  Google Scholar 

  2. Sharma M, Devi M. Probiotics: A comprehensive approach toward health foods. Crit. Rev. Food Sci. 54: 537–552 (2014)

    Article  CAS  Google Scholar 

  3. Dobson A, Cotter P, Ross P, Hill C. Bacteriocin production: A probiotic trait? Appl. Environ. Microb. 78: 1–6 (2012)

    Article  CAS  Google Scholar 

  4. Cárdenas N, Calzada J, Peirotén Á, Jiménez E, Escudero R, Rodríguez JM, Medina M, Fernández L. Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. Biomed. Res. Int. 2014: 1–12 (2014)

    Article  Google Scholar 

  5. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microb. 74: 333–335 (2008)

    CAS  Google Scholar 

  6. Ben HLB, Pieter M, Brian R. Optimal mode of operation for biomass production. Chem. Eng. Sci. 57: 2799–2809 (2002)

    Article  Google Scholar 

  7. Salehmin MNI, Annuar MSM, Chisti Y. High cell density fed-batch fermentations for lipase production: Feeding strategies and oxygen transfer. Bioproc. Biosyst. Eng. 36: 1527–1543 (2013)

    Article  CAS  Google Scholar 

  8. Callewaert R, de Vuyst L. Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Appl. Environ. Microb. 66: 606–613 (2002)

    Article  Google Scholar 

  9. Park JH, Tae YK, Kwang HL, Sang YL. Fed-batch culture of Escherichia coli for Lvaline production based on in silico flux response analysis. Biotechnol. Bioeng. 108: 934–946 (2011)

    Article  CAS  Google Scholar 

  10. Duan Y, Zhu Z, Cai K, Tan X, Lu X. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS ONE 6: e20265 (2011)

    Article  CAS  Google Scholar 

  11. Seo MJ, Choi HJ, Chung KH, Pyun YR. Production of a platelet aggregation inhibitor, Salmosin, by high cell density fermentation of recombinant Escherichia coli. J. Microbiol. Biotechn. 21: 1053–1056 (2011)

    Article  CAS  Google Scholar 

  12. Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioproc. Biosyst. Eng. 36: 1905–1912 (2013)

    Article  CAS  Google Scholar 

  13. Aleksandra D-V, Ljiljana M, Svetlana N, Jelena P, Sunèica K-T, Katarina M. Distillery stillage as a new substrate for lactic acid production in batch and fedbatch fermentation. Chem. Eng. Trans. 34: 97–102 (2013)

    Google Scholar 

  14. Ngoh GC, Masitah H, Andri CK, Chew FL, Margaret T. Production of ethanol by fed-batch fermentation. Pertanika J. Sci. Technol. 17: 399–408 (2009)

    Google Scholar 

  15. Racin FM, Badal CBC. Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem. 42: 1609–1613 (2007)

    Article  Google Scholar 

  16. Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modeling, metabolic control and experimental analysis, Microbiology 148: 1003–1013 (2002)

  17. Ning C, Jin H, Zhi-bin F, Lei Y, Qing-yang X, Ting-yi W. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl. Biochem. Biotech. 158: 595–604 (2009)

    Article  Google Scholar 

  18. Ramirez OT, Zamora R, Quintero R, Lopez-Munguia A. Exponentially fed-batch cultures as an alternative to chemostats: The case of penicillin acylase production by recombinant E.coli. Enzyme Microb. Tech. 16: 895–903 (1994)

    Article  CAS  Google Scholar 

  19. Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S. Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 23: 67–71 (1996)

    Article  CAS  Google Scholar 

  20. Liu J, Wang Q, Zou H, Liu Y, Wang J, Gan K, Xiang J. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution. Microb. Biotechnol. 6: 685–693 (2013)

    CAS  Google Scholar 

  21. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. A. Van. Leeuw. J. Microb. 82: 187–216 (2002)

    Article  Google Scholar 

  22. Khan NS, Singh RP, Prasad B. Studies on substrate inhibition in the microbial production of L-glutamic acid. IJERT 2: 1–7 (2013)

    CAS  Google Scholar 

  23. Sadhukhan S, Villa R, Sarkar U. Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery. Biotechnol. Rep. 10: 84–93 (2016)

    Article  Google Scholar 

  24. Hwang CF, Chen JN, Huang YT, Mao ZY. Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol-lowering ability. Afr. J. Biotechnol. 10: 7010–7020 (2011)

    CAS  Google Scholar 

  25. Tayyba G, Muhammad I, Zahid A, Tahir A, Zubia Z, Asma T, Kamran M, Ehsan N, Mehmood S. Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat. Res. Appl. Sci. 7: 222–229 (2014)

    Article  Google Scholar 

  26. Liew SL. Pilot-scale production of Lactobacillus rhamnosus ATCC 7469. PhD thesis, Universiti Putra Malaysia, Serdang, Selangor, Malaysia (2004)

    Google Scholar 

  27. Ariff A, Ooi TC, Mohd Saud H, Shamsuddin Z. Repeated fed-batch cultivation of nitrogen-fixing bacterium, Bacillus sphaericus UPMB10, using glycerol as the carbon source. Pertanika J. Sci. Technol. 18: 365–375 (2010)

    Google Scholar 

  28. Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31: 877–902 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murni Halim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, L.C., Halim, M., Rahim, R.A. et al. Strategies in fed-batch cultivation on the production performance of Lactobacillus salivarius I 24 viable cells. Food Sci Biotechnol 25, 1393–1398 (2016). https://doi.org/10.1007/s10068-016-0217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0217-1

Keywords

Navigation