Skip to main content
Log in

Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l−1 and 138.8 mg l−1 h−1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76:985–990

    Article  CAS  Google Scholar 

  2. Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimisation of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49:72–76

    Article  CAS  Google Scholar 

  3. Lauritzen L, Hansen H, Jorgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    Article  CAS  Google Scholar 

  4. Nordoy A, Marchioli R, Arnesen H, Videbaek J (2001) n-3 polyunsaturated fatty acids and cardiovascular diseases. Lipids 36:127–129

    Article  Google Scholar 

  5. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  6. Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the x-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:15–146

    Article  Google Scholar 

  7. Jiang Y, Fan KW, Wong RTY, Chen F (2004) Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agric Food Chem 52:1196–1200

    Article  CAS  Google Scholar 

  8. Fan KW, Chen F, Jones EBG, Vrijmoed LLP (2001) Eicosapentaenoic and docosahexaenoic acids production by and okara-utilizing potential of thraustochytrids. J Ind Microbiol Biotechnol 27:199–202

    Article  CAS  Google Scholar 

  9. Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Tanticharoen M, Verduyn C (2007) Coconut water as a medium additive for the production of docosahexaenoic acid (C22:6 n3) by Schizochytrium mangrovei Sk-02. Biores Technol 98:281–288

    Article  CAS  Google Scholar 

  10. Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburnc JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Biores Technol 101:3623–3627

    Article  CAS  Google Scholar 

  11. Ganuza E, Anderson AJ, Ratledge C (2008) High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett 30:1559–1564

    Article  CAS  Google Scholar 

  12. Ren LJ, Huang H, Xiao AH, Lian M, Ji XJ (2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioproc Biosyst Eng 32:837–843

    Article  CAS  Google Scholar 

  13. Zeng Y, Ji XJ, Lian M, Ren LJ, Jin LJ, Ouyang PK, Huang H (2011) Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl Biochem Biotechnol 164:249–255

    Article  CAS  Google Scholar 

  14. Song XJ, Zhang XC, Kuang CH, Zhu LY, Guo N (2007) Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology. Process Biochem 42:1391–1397

    Article  CAS  Google Scholar 

  15. Jakobsen AN, Aasen IM, Josefsen KD, Strom AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  CAS  Google Scholar 

  16. Ren LJ, Ji XJ, Huang H, Feng Y, Qu L, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656

    Article  CAS  Google Scholar 

  17. Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, Ouyang PK, Huang H (2011) Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett Appl Microbiol 52:2–22

    Article  Google Scholar 

  18. Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Biores Technol 123:8–14

    Article  CAS  Google Scholar 

  19. Ethier S, Woisard K, Vaughan D, Wen ZY (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Biores Technol 102:88–93

    Article  CAS  Google Scholar 

  20. Lee J, Lee SY, Park S, Middleberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  Google Scholar 

  21. Zhao X, Hu CM, Wu SG, Shen HW, Zhao ZB (2011) Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. J Ind Microbiol Biotechnol 38:627–632

    Article  CAS  Google Scholar 

  22. Bae SM, Park YC, Lee TH, Kweon DH, Choi JH (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microb Tech 35:545–554

    Article  CAS  Google Scholar 

  23. Shakeri M, Sugano Y, Shoda M (2007) Production of dye-decolorizing peroxidase (rDyP) from complex substrates by repeated-batch and fed-batch cultures of recombinant Aspergillus oryzae. J Biosci Bioeng 103:129–134

    Article  CAS  Google Scholar 

  24. Fan KW, Jiang Y, Fan YW, Chen F (2007) Lipid characterization of mangrove thraustochytridSchizochytrium mangrovei. J Agric Food Chem 55:2906–2910

    Article  CAS  Google Scholar 

  25. Michelle KM, Wong Clement KM, Tsui Doris WT, Au Lilian LP, Vrijmoed (2008) Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 49:266–270

    Article  Google Scholar 

  26. Yamanè T, Shimizu S (1984) Fed-batch techniques in microbial processes. Adv Biochem Eng Biotechnol 30:147–194

    Google Scholar 

  27. Zhang LY, Yang YL, Sun JA, Shen YL, Wei DZ, Zhu JW, Chu J (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Biores Technol 101:1961–1967

    Article  CAS  Google Scholar 

  28. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  29. Ito T, Sota H, Honda H, Shimizu K, Kobayashi T (1991) Efficient acetic acid production by repeated fed-batch fermentation using two fermentors. Appl Microbiol Biotechnol 36:295–299

    Article  CAS  Google Scholar 

  30. Moeller L, Grünberg M, Zehnsdorf A, Strehlitz B, Bley T (2010) Biosensor online control of citric acid production from glucose by Yarrowia lipolytica using semi continuous fermentation. Eng Life Sci 10:11–320

    Article  Google Scholar 

  31. Koh ES, Lee TH, Lee DY, Kim HJ, Ryu YW, Seo JH (2003) Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol Lett 25:2103–2105

    Article  CAS  Google Scholar 

  32. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (no. 2011CBA00802), the Scientific Research Project for Post-graduate in Jiangsu Province (no. CXLX11_0366), the Natural Science Foundation of Jiangsu Province (no. BK2012424), National Science Foundation for Distinguished Young Scholars of China (no. 21225626), the National Science and Technology Pillar Program (no. 2011BAD23B03), and the National High Technology Research and Development Program of China (no. 2012AA021704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, L., Ren, LJ., Sun, GN. et al. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst Eng 36, 1905–1912 (2013). https://doi.org/10.1007/s00449-013-0966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0966-7

Keywords

Navigation