Skip to main content
Log in

Optimization of Fermentation Conditions for the Biosynthesis of l-Threonine by Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the fed-batch fermentation technique was applied to improve the yield of l-threonine produced by Escherichia coli TRFC. Various fermentation substrates and conditions were investigated to identify the optimal carbon source, its concentration and C/N ratio in the production of l-threonine. Sucrose was found to be the optimal initial carbon source and its optimal concentration was determined to be 70 g/L based on the results of fermentations conducted in a 5-L jar fermentor using a series of fed-batch cultures of E. coli TRFC. The effects of glucose concentration and three different feeding methods on the production of l-threonine were also investigated in this work. Our results showed that the production of l-threonine by E. coli was enhanced when glucose concentration varied between 5 and 20 g/L with DO-control pulse fed-batch method. Furthermore, the C/N ratio was a more predominant factor than nitrogen concentration for l-threonine overproduction and the optimal ratio of ammonium sulfate to sucrose (g/g) was 30. Under the optimal conditions, a final l-threonine concentration of 118 g/L was achieved after 38 h with the productivity of 3.1 g/L/h (46% conversion ratio from glucose to threonine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leuchtenberger, W. (1996). Bio/Technology, 6, 465–502.

    CAS  Google Scholar 

  2. Kim, Y. H., Park, J. S., Cho, J. Y., Cho, K. M., Park, Y. H., & Lee, J. (2004). The Biochemical Journal, 381, 823–829. doi:10.1042/BJ20031763.

    Article  CAS  Google Scholar 

  3. Lee, M. H., Lee, H. W., Park, J. H., Ahn, J. O., Jung, J. K., & Hwang, Y. I. (2006). Journal of Bioscience and Bioengineering, 101, 127–130. doi:10.1263/jbb.101.127.

    Article  CAS  Google Scholar 

  4. Debabov, V. G. (2003). Advances in Biochemical Engineering/Biotechnology, 79, 113–136. doi:10.1007/3-540-45989-8_4.

    Article  CAS  Google Scholar 

  5. Song, K. H., Lee, H. H., & Hyun, H. H. (2000). Applied Microbiology and Biotechnology, 54, 647–651. doi:10.1007/s002530000417.

    Article  CAS  Google Scholar 

  6. Okamoto, K., & Ikeda, M. (2000). Journal of Bioscience and Bioengineering, 89, 87–89. doi:10.1016/S1389-1723(00)88057-3.

    Article  CAS  Google Scholar 

  7. Kim, K. A., Noh, B. S., Lee, J. K., Kim, S. Y., Park, Y. C., & Oh, D. K. (2000). Journal of Microbiology and Biotechnology, 10, 69–74.

    CAS  Google Scholar 

  8. Kim, J. I. H., & Yoo, Y. J. E. (2002). Journal of Microbiology and Biotechnology, 12, 617–621.

    CAS  Google Scholar 

  9. Li, Y., Chen, J., Mao, Y. Y., Lun, S. Y., & Koo, Y. M. (1998). Process Biochemistry, 33, 709–714. doi:10.1016/S0032-9592(98)00038-7.

    Article  CAS  Google Scholar 

  10. Zhu, M., Yu, L.-J., Li, W., Zhou, P.-P., & Li, C.-Y. (2006). Enzyme and Microbial Technology, 38, 735–740. doi:10.1016/j.enzmictec.2005.07.025.

    Article  CAS  Google Scholar 

  11. Okamoto, K., & Ikeda, M. (2000). Journal of Bioscience and Bioengineering, 89, 87–89. doi:10.1016/S1389-1723(00)88057-3.

    Article  CAS  Google Scholar 

  12. Xiufu, H., Daidi, F., Yane, L., Xi, Z., Huijuan, S., Yu, M., Xiaoxuan, M., an, S. L., & Guifang, Z. (2006). Chinese Journal of Chemical Engineering, 14, 242–247. doi:10.1016/S1004-9541(06)60065-7.

    Article  Google Scholar 

  13. Andersson, C., Hodge, D., Berglund, K. A., & Rova, U. (2007). Biotechnology Progress, 23, 381–388. doi:10.1021/bp060301y.

    Article  CAS  Google Scholar 

  14. Yang, R. Y. K., & Su, J. (1993). Bioprocess and Biosystems Engineering, 9, 97–102.

    CAS  Google Scholar 

  15. Clarke, K. G., Hansford, G. S., & Jones, D. T. (1988). Biotechnology and Bioengineering, 32, 538–544. doi:10.1002/bit.260320417.

    Article  CAS  Google Scholar 

  16. Horntvedt, B.R., Rambekk, M., & Bakke, R. (1998). Water Science and Technology, 37, 259–262. doi:10.1016/S0273-1223(98)00117-6.

    Article  CAS  Google Scholar 

  17. Ying Lin, H., & Neubauer, P. (2000). Journal of Biotechnology, 79, 27–37. doi:10.1016/S0168-1656(00)00217-0.

    Article  Google Scholar 

  18. Weber, A. E., & San, K. Y. (1988). Biotechnology Letters, 10, 531–536. doi:10.1007/BF01027124.

    Article  CAS  Google Scholar 

  19. Bin, F. Z., Yang, W. D., Yang, X. Q., Yi, W. T., & Ning, C. (2006). China Biotechnology, 26, 54–58.

    Google Scholar 

Download references

Acknowledgments

We thank Hui Liu and Guo-qiang Zhang for critical reading of this manuscript and providing valuable suggestions. This work was supported by the National High Technology Research and Development Program of China (Grant No.2006AA02Z216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-yi Wen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 42.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, N., Huang, J., Feng, Zb. et al. Optimization of Fermentation Conditions for the Biosynthesis of l-Threonine by Escherichia coli . Appl Biochem Biotechnol 158, 595–604 (2009). https://doi.org/10.1007/s12010-008-8385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8385-y

Keywords

Navigation