Skip to main content
Log in

Probing the boundary effect in granular piles

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present in this paper a DEM study of the effect of boundary configuration on the formation of granular piles. We examine the macro and micro responses of granular piles formed in a two-wall boundary system consisting of a horizontal base and an inclined wall. The results show that the left inclined boundary wall does not exert a considerable impact on the angle of repose \(\alpha _{R}\) estimated by the right free surface of granular pile, but it has an obvious effect on the angle of repose \(\alpha _{L}\) obtained by the left free surface. We observe the shifting of pile apex to the left inclined wall, with the shift distance depending on the orientation angle \(\beta \) of inclined wall. The principal stress field of granular pile is characterized by two sub regions, in which the major principal stresses are oriented respectively in acute and obtuse angles relative to the horizontal axis. We propose an index \(\lambda \) relating to the distribution of the two sub regions of principal stress field, and identify a relationship between \(\lambda \) (\(=\,\sin \beta \)) and \(\beta \) to account for the effect of boundary configuration on the internal mechanical responses of granular pile. We also analyze the boundary responses at varying \(\beta \) values, and observe three modes for the friction mobilization along the inclined boundary wall, on the basis of which we preliminarily illuminate the effect of boundary configuration on the macro responses of granular piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  2. Duran, J.: Sand, Powders, and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (1999)

    Google Scholar 

  3. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  4. Savage, S.B.: Modelling and granular material boundary value problems. In: Herrmann, H.J., Hovi, J.-P., Luding, S. (eds.) Physics of Dry Granular Media, pp. 25–96. NATO Advanced Study Institute/Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  5. Nedderman, R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  6. Vanel, L., Howell, D.W., Clark, D., Behringer, R.P., Clément, E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60, R5040–R5043 (1999)

    Article  ADS  Google Scholar 

  7. Geng, J., Longhi, E., Behringer, R.P., Howell, D.W.: Memory in two-dimensional heap experiments. Phys. Rev. E 64, 060301 (2001)

    Article  ADS  Google Scholar 

  8. Zuiguel, L., Mullin, T., Rotter, J.M.: The effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98, 028001 (2007)

    Article  ADS  Google Scholar 

  9. Robinson, D.A., Friedman, S.P.: Observations of the effects of particle shape and particle size distribution on avalanching of granular media. Physica A 311, 97–110 (2002)

    Article  ADS  Google Scholar 

  10. Matuttis, H.G.: Simulation of the pressure distribution under a two-dimensional heap of polygonal particles. Granul. Matter 1, 83–91 (1998)

    Article  Google Scholar 

  11. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packing and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  12. Li, Y., Xu, Y., Thornton, C.: A comparison of discrete element method simulations and experiments for ‘sandpile’ composed of spherical particles. Powder Technol. 160, 219–228 (2005)

    Article  Google Scholar 

  13. Zhou, C., Ooi, J.Y.: Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41, 707–714 (2009)

    Article  Google Scholar 

  14. Zhu, J., Liang, Y., Zhou, Y.: The effect of the particle aspect ratio on the pressure at the bottom of sandpiles. Powder Technol. 234, 37–45 (2013)

    Article  Google Scholar 

  15. Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles. Granul. Matter 16, 695–709 (2014)

    Article  ADS  Google Scholar 

  16. Dai, B.B., Yang, J., Zhou, C.Y.: Micromechanical origin of angle of repose in granular materials. Granul. Matter 19, 24 (2017)

    Article  Google Scholar 

  17. Dai, B.B., Yang, J., Zhou, C.Y., Zhang, W.: Effect of particle shape on the formation of sandpile. In: Proceedings of the 7th International Conference on Discrete Element Method, Dalian, China, pp. 767–776 (2016)

  18. Lee, J., Herrmann, H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A Math. Gen. 26, 373–383 (1993)

    Article  ADS  Google Scholar 

  19. Luding, S.: Stress distribution in static two-dimensional granular model media in the absence of friction. Phys. Rev. E 55, 4720–4729 (1997)

    Article  ADS  Google Scholar 

  20. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: Numerical investigation of the angle of repose of monosized spheres. Phys. Rev. E 64, 021301 (2001)

    Article  ADS  Google Scholar 

  21. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435, 188–191 (2005)

    Article  ADS  Google Scholar 

  22. Alonso, J.J., Hovi, J.P., Herrmann, H.J.: Lattice model for the calculation of the angle repose from microscopic grain properties. Phys. Rev. E 58, 672–680 (1998)

    Article  ADS  Google Scholar 

  23. Herrmann, H.J.: Statistical models for granular materials. Physica A 263, 51–62 (1999)

    Article  ADS  Google Scholar 

  24. Herrmann, H.J.: Granular matter. Physica A 313, 188–210 (2002)

    Article  ADS  MATH  Google Scholar 

  25. Kalman, H., Goder, D., Rivken, M., Ben-Dor, G.: The effect of the particle-surface friction coefficient on the angle of repose. Bulk Solids Handl. 13, 123–128 (1993)

    Google Scholar 

  26. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125, 45–54 (2002)

    Article  Google Scholar 

  27. Grasselli, Y., Herrmann, H.J.: On the angle of dry granular heaps. Physica A 246, 301–312 (1997)

    Article  ADS  Google Scholar 

  28. Ogale, S.B., Bathe, R.N., Choudhary, R.J., Kale, S.N., Ogale, A.S., Banpurkar, A.G., Limaye, A.V.: Boundary effects on the stability of thin submerged granular piles. Physica A 354, 49–58 (2005)

    Article  ADS  Google Scholar 

  29. Dury, C.M., Ristow, G.H.: Boundary effects on the angle of repose in rotating cylinder. Phys. Rev. E 57, 4491–4497 (1998)

    Article  ADS  Google Scholar 

  30. Trollope, D.H., Burman, B.C.: Physical and numerical experiments with granular wedges. Géotechnique 30, 137–157 (1980)

    Article  Google Scholar 

  31. Lee, I.K., Herington, J.R.: Stress beneath granular embankments. In: Proceedings in 1st Australia–New Zealand Conference on Geomechanics, pp. 291–296. Melbourne (1971)

  32. Zhou, Y.C., Xu, B.H., Zou, R.P., Yu, A.B., Zulli, P.: Stress distribution in a sandpile formed on a deflected base. Adv. Powder Technol. 14, 401–410 (2003)

    Article  Google Scholar 

  33. Ooi, J.Y., Ai, J., Zhong, Z., Chen, J.F., Rotter, J.M.: Progressive pressure measurements beneath a granular pile with and without base deflection. In: Chen, J.F., Ooi, J.Y., Teng, J.G. (eds.) Structures and Granular Solids: From Scientific Principles to Engineering Applications, pp. 87–92. CRC Press, London (2008)

    Google Scholar 

  34. http://www.feedandgrain.com/magazine/temporary-storage-permanent-solution

  35. http://hansonsilo.com/precast/agricultural-storage/grain-storage/

  36. PFC2D: User’s Manual for PFC2D. Itasca Consulting Group, Inc., Minneapolis (2005)

  37. Yang, Z.X., Yang, J., Wang, L.Z.: Micro-scale modeling of anisotropy effects on undrained behavior of granular soil. Granul. Matter 15, 557–572 (2013)

    Article  Google Scholar 

  38. Dai, B.B., Yang, J., Luo, X.D.: A numerical analysis of the shear behavior of granular soil with fines. Particuology 21, 160–172 (2015)

    Article  Google Scholar 

  39. Dai, B.B., Yang, J., Zhou, C.Y., Luo, X.D.: DEM investigation on the effect of sample preparation on the shear behavior of granular soil. Particuology 25, 111–121 (2016).

  40. Cavarretta, I., Coop, M., O’Sullivan, C.: The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60, 413–423 (2010)

    Article  Google Scholar 

  41. Yang, J., Wei, L.M.: Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62, 1111–1125 (2012)

    Article  Google Scholar 

  42. Yang, J., Luo, X.D.: Exploring the relationship between critical state and particle shape for granular materials. J. Mech. Phys. Solids 84, 196–213 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the financial support provided by the National Natural Science Foundation of China (No. 51209237) and the Fundamental Research Funds for the Central Universities (No. 13lgpy05). He is also indebted to Dr. Zhaofeng Li, Dr. Weihai Yuan and Dr. Wei Zhang for the constructive discussions with them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei-Bing Dai.

Ethics declarations

Conflict of interest

We here declare that we have no financial and personal relationships with other people or organizations which can inappropriately influence the work presented in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, BB. Probing the boundary effect in granular piles. Granular Matter 20, 5 (2018). https://doi.org/10.1007/s10035-017-0775-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0775-9

Keywords

Navigation