Skip to main content

Modeling and Granular Material Boundary Value Problems

  • Chapter
Physics of Dry Granular Media

Part of the book series: NATO ASI Series ((NSSE,volume 350))

Abstract

Some general aspects of modeling in the natural sciences are discussed. Minimum requirements that should be satisfied by theories of granular materials are proposed. Some recent work dealing with statics of granular materials is critically reviewed. New calculations of the elusive ‘stress dip’ under a pile of granular material placed on a rough rigid base are described.

‘.... read the older literature.’ J.D. Eshelby, F.R.S., physicist, ‘metalist’, and ASME Timoshenko Medalist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABAQUS/Standard (1994) Users Manual, Vols. I and I I. Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, Rhode Island.

    Google Scholar 

  2. Allen, J.R.L. (1970a) The Avalanching of Granular Solids on Dune and Similar Slopes. J. Geol., 78, 326–351.

    Article  ADS  Google Scholar 

  3. Allen, J.R.L. (1970b) The Angle of Initial Yield of Haphazard Assemblages of Equal Spheres, in Bulk. Geologie en Mijnbouw, 49, 13–22.

    Google Scholar 

  4. Allen, J.R.L. (1985) Principles of Physical Sedimentology. George Allen and Unwin, London.

    Book  Google Scholar 

  5. Arthur, J.R.F. and Menzies, B.K. (1972) Inherent Anisotropy in Sand. Géotechnique, 22, 115–128.

    Article  Google Scholar 

  6. Bagnold, R.A. (1966) The Shearing and Dilation of Dry Sand and the `Singing’ Mechanism. Proc. Roy. Soc., London, Ser. A, 295, 219–232.

    Google Scholar 

  7. Bagster, D.F. (1978) An Idealized Model of Granular Material Behaviour in Ore Heaps and Hoppers. J. Powder Bulk Solids Techn., 2, 42–46.

    Google Scholar 

  8. Baker, R. and Desai, C.S. (1984) Induced Anisotropy During Plastic Straining. Int. J. Numer. Anal. Meth. Geornech., 8 (2), 167–185.

    Article  MATH  Google Scholar 

  9. Batchelor, G.K. (1981) Preoccupations of a Journal Editor. Journ. Fluid Mech., 106, 1–26.

    Google Scholar 

  10. Bazant, Z.P. (1985) Mechanics of Geomaterials: Rocks, Concrete, Soils. John Wiley Sons, New York.

    Google Scholar 

  11. Benink, E.J. (1989) Flow and Stress Analysis of Cohesionless Bulk Materials in Silos Related to Codes. Ph.D. Thesis, University of Twente, The Netherlands.

    Google Scholar 

  12. Booker, J.R. (1969) Applications of Theories of Plasticity to Cohesive Frictional Soils. Ph.D. Thesis, University of Sydney.

    Google Scholar 

  13. Booth, E.P.O. (1938) The Mechanics of a Pile of Granular Material Applied to Bin Design. unpublished paper in the Institution of Structural Engineers, South Africa.

    Google Scholar 

  14. Bouchaud, J.-P., Cates, M.E. and Claudin, P. (1995) Stress Distribution in Granular Media and Nonlinear Wave Equation. J. Physique I, 5, 639–656.

    Google Scholar 

  15. Bouchaud, J.-P., Claudin, P., Cates, M.E. and Wittmer, J.P. (1998) Models of Stress Propagation in Granular Media. Paper in this volume.

    Google Scholar 

  16. Boussinesq, J. (1885) Applications des Potentials à l’étude de l’équilibre et du Mouvement des Solids Elastique. Gauthier-Villard, Paris.

    Google Scholar 

  17. Brahtz, J.H.A. (1936) Rational Design of Earth Dams. Proc. 2nd Congr. Large Earth Dams. 4, 543–576.

    Google Scholar 

  18. Brockbank, R., Huntley, J.M. and Ball, R. (1997) Contact Force Distribution Beneath a Three-dimensional Granular Pile. J. Physique I France, 10, 1521–1532.

    Article  ADS  Google Scholar 

  19. Brown, R.L. and Richards, J.C. (1970) Principles of Powder Mechanics. Pergamon Press, Oxford.

    Google Scholar 

  20. Burman, B.C. (1971) A Numerical Approach to the Mechanics of Discontinua. Ph.D. thesis, James Cook University of North Queensland.

    Google Scholar 

  21. Burman, B.C. (1974) Development of a Numerical Model for Discontinua. Aust. Geomech. J. G4 (1), 13–22.

    Google Scholar 

  22. Cantelaube, F. and Goddard, J.D. (1997) Elastoplastic Arching in 2D Granular Heaps. Powders and Grains 97, Proc. of 3rd Internat. Conf., Durham, North Carolina, 18–23 May, 1997, eds. R.P. Behringer and J.T. Jenkins, A.A. Balkema, Rotterdam, 231–234.

    Google Scholar 

  23. Carson, J.W., Royal, T.A. and Goodwill, D.J. (1986) Understanding and Eliminating Particle Segregation Problems. Balk Solids Handling, 6, 139–144.

    Google Scholar 

  24. Carson, J.W., Royal, T.A. and Troxel, T.G. (1996) Mix Dry Bulk Solids Properly and Maintain Blend Integrity. Chem. Eng. Frog., 92 (10), 72–80.

    Google Scholar 

  25. Casagrande, A. and Carillo, N. (1944) Shear Failure of Anisotropic Materials. Boston Soc. Civil Engrs., 31, 74–87.

    Google Scholar 

  26. Cates, M.E., Wittmer, J.P., Bouchaud, J.-P. and Claudin, P. (1997) Stress Propagation, Construction History, and Elastic Indeterminacy in Sandpiles. Unpublished Manuscript, 38 pp.

    Google Scholar 

  27. Caughey, R.A., Tooles, C.W. and Scheer, A.C. (1951) Lateral and Vertical Pressure of Granular Materials in Deep Bins. Bull. 173, Eng. Expt. Sta., Iowa State College.

    Google Scholar 

  28. Chargaff, E. (1978) Heraclitean Fire, Sketches from a Life Before Nature. The Rockefeller University, New York.

    Google Scholar 

  29. Chen, W.-F. (1975) Limit Analysis and Soil Plasticity. Elsevier, Amsterdam.

    MATH  Google Scholar 

  30. Chen, W.-F. (1994) Constitutive Equations for Engineering Materials, Volume 2, Plasticity and Modeling. Elsevier, Amsterdam.

    Google Scholar 

  31. Chen, W.-F. and Baladi, G.Y. (1985) Soil Plasticity, Theory and Application. Elsevier, Amsterdam.

    Google Scholar 

  32. Cowin, S.C. (1977) The Theory of Static Loads in Bins. J. Appl. Mech., 44, 409–412.

    Google Scholar 

  33. Cowin, S.C. (1978) Microstructural Continuum Models for Granular Materials. Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, eds. S.C. Cowin and M. Satake, Gakujutsu Bunken Fukyu-Kai, Tokyo, 162–170.

    Google Scholar 

  34. Cowin, S.C. (1985) The Relation Between the Elasticity Tensor and the Fabric Tensor. Mech. Mater., 4, 1–41.

    Google Scholar 

  35. Cowin, S.C. (1988) A Simple Theory of Instantaneously Induced Anisotropy. Micromechanics of Granular Materials, eds. M. Satake and J.T. Jenkins, Elsevier Science Publishers, Amsterdam, 71–80.

    Google Scholar 

  36. Cowin, S.C. (1992) A Note on the Microstructural Dependence of the Anisotropic Elastic Constants of Textured Materials. Advances in Micromechanics of Granular Materials, eds. H.H. Shen, M. Satake, M. Mehrabadhi, C.S. Cheng and C.S. Campbell, Elsevier Science Publishers, Amsterdam, 61–70.

    Google Scholar 

  37. Darwin, G.H. (1883) On the Horizontal Thrust of a Mass of Sand. Paper No. 1904, Minutes of the Proc. Inst. Civ. Eng., 71, 350–378.

    Google Scholar 

  38. Den Hartog, J.P. (1952) Advanced Strength of Materials. McGraw Hill, New York.

    Google Scholar 

  39. Deutsch, G.P. and Schmidt, L.C. (1969) Pressure on Silo Walls. J. Eng. Ind., 91, 450.

    Google Scholar 

  40. Doolen, G.D. (1991) Lattice Gas Methods: Theory, Applications and Hardware. MIT Press, Cambridge.

    Google Scholar 

  41. Dyson, F. (1958) Innovation in Physics. Scientific American, 199, 74–82.

    Article  Google Scholar 

  42. Edwards, S.F. and Oakeshott, R.B. (1989) The Transmission of Stress in an Aggregate. Physica D, 38, 88–92.

    Article  MathSciNet  ADS  Google Scholar 

  43. Edwards, S.F. and Mounfield, C.C. (1996) A Theoretical Model for the Stress Distribution in Granular Matter. III. Forces in Sandpiles. Physica A, 226, 25–33.

    Google Scholar 

  44. Emeriault, F. and Cambou, B. (1996) Micromechanical Modelling of Anisotropic Non-Linear Elasticity of Granular Medium. Int. J. Solids Struct., 33, 2591–2607.

    Google Scholar 

  45. Foerster; S.F., Louge, M.Y., Chang, H. and Alia, K. (1994) Measurement of the Collisional Properties of Small Spheres. Physics of Fluids, 6, 1108–1115.

    Google Scholar 

  46. Feynman, R. (1974) Cargo Cult Science–Some remarks on science, pseudo science, and learning how to not fool yourself. (Commencement Address to the Caltech graduating classes of 1974). Engineering and Science, ( Caltech Alumni Magazine ), June 1974, 10–13.

    Google Scholar 

  47. Glastonbury, J.R. and Bratel, B.E. (1966) Pressures in Contained Particle Beds from a Two-Dimensional Model. Trans. Instn. Chem. Enyrs., 44, T128 - T135.

    Google Scholar 

  48. Grasselli, Y. and Herrmann, H.J. (1997) On the Angles of Dry Granular Heaps. preprint.

    Google Scholar 

  49. Green, A.E and Zerna, W. (1960) Theoretical Elasticity. Oxford University Press.

    Google Scholar 

  50. Gudehus, G. (1969–70) Granular Media as Rate Independent Simple Materials: Constitutive Relations. Powder Technology, 3, 344–351.

    Google Scholar 

  51. Gudehus, G. (1985) Requirements for Constitutive Relations for Soils. Mechanics of Geomaterials: Rocks, Concrete, Soils, ed. Z.P. Bazant, John Wiley Sons, New York, 47–63.

    Google Scholar 

  52. Gudehus, G. (1997) Attractors, Percolation Thresholds and Phase Limits of Granular Soils. Powders and Grains 97, Proc. of 3rd Internat. Conf., Durham, North Carolina, 18–23 May, 1997, eds. R.P. Behringer and J.T. Jenkins, A.A. Balkema, Rotterdam, 169–183.

    Google Scholar 

  53. Harr, M.E. (1977) Mechanics of Particulate Media. McGraw Hill, New York.

    Google Scholar 

  54. Hearmon, R.F.S. (1961) An Introduction to Applied Anisotropie Elasticity. Oxford University Press.

    Google Scholar 

  55. Herrmann, H. (1995) Simulating Moving Granular Media. In Mobile Particulate Systems, Ed. E. Guazzelli and L. Oger, Kluwer Academic Publishers, Dordrecht, 281304.

    Google Scholar 

  56. Hong, D.C. (1993) Stress Distribution of a Hexagonally Packed Granular Pile. Phys. Rev. E., 47, 760–762.

    Google Scholar 

  57. Horgan, J. (1995) From Complexity to Perplexity. Scientific American, 275, (June), 104–109.

    Article  Google Scholar 

  58. Hummel, F.H. and Finnan, E.J. (1920–21) Distribution of Pressure on Surfaces Supporting a Mass of Granular Material. Proc. Instn. Civil Eng. 212, 369–392.

    Google Scholar 

  59. Huang, J.H.S. and Savage, S.B. (1970) Wall Stresses Developed by Granular Material in Axisymmetric Bins. Dept. of Civil Engineering and Applied Mechanics, McGill University, FML-TR 70–1, 130 pp.

    Google Scholar 

  60. Huang, Z.-J. and Savage, S.B. (1998) Granular Dynamics Simulations of Granular Piles Composed of Hexagonal Arrangements of Circular Rods. In preparation.

    Google Scholar 

  61. Jamieson, J.A. (1903) Grain Pressure in Deep Bins. Trans. Can. Soc. Czv. Enges., 17, 554.

    Google Scholar 

  62. Janssen, H.A. (1895) Versuche über Getreidedruck in Silozellen. Z. Ver. deut. Ing., 39, 1045.

    Google Scholar 

  63. Jenkin, C.F. (1931) The Pressure Exerted by Granular Material: An Application of the Principles of Dilatancy. Proc. Roy. Soc., London, Ser. A, 131, 53–89.

    Google Scholar 

  64. Jenkins, J.T. (1991) Anisotropic Elasticity for Random Arrays of Identical Spheres. Modern Theory of Anisotropie Elasticity and Its Applications, eds. J. Wu, T.C.T. Ting and D.M. Barnett, Society for Industrial and Applied Mathematics, Philadelphia, 368–377.

    Google Scholar 

  65. Jenkins, J.T. (1997) Inelastic Behavior of Random Arrays of Identical Spheres. Mechanics of Granular and Porous Materials, Proc. IUTAM Symposium, Cambridge, 15–17 July 1996, eds. N.A. Fleck and A.C.F. Cocks, Kluwer Academic Publishers, Dordrecht, 11–22.

    Google Scholar 

  66. Johnson, K.L. (1985) Contact Mechanics. Cambridge University Press.

    Google Scholar 

  67. Jotaki, T. and Moriyama, R. (1979) On the Bottom Pressure Distribution of the Bulk Materials Piled with the Angle of Repose. J. Soc. Powder Technol. Jpn., 60, 184–191.

    Google Scholar 

  68. Konishi, J. and Naruse, F. (1988) A Note on Fabric in Terms of Voids. Micromechanics of Granular Materials, eds. M. Satake and J.T. Jenkins, Elsevier Science Publishers, Amsterdam, 39–46.

    Google Scholar 

  69. Kirchhoff, G. (1859) Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastichen Stabes. J. f. Math. ( Grelle ), 56.

    Google Scholar 

  70. Koenen, M. (1896) Berechnung des Seiten-und Bodendrucks in Silozellen. Centrbl. Bauverwaltung, 16, 446–447.

    Google Scholar 

  71. Kötter, F. (1899) Der Bodendruck von Sand in vertikalen zylindrischen Gefässen. J. Math., 120, 189–241.

    MATH  Google Scholar 

  72. Kruyt, N.P. and Rothenburg, L. (1996) Micromechanical Definition of the Strain Tensor for Granular Materials. J. Appl. Mech., 118, 706–771.

    Google Scholar 

  73. Labous, L. and Rosato, A.D. (1997) Measurement of Collisional Properties of Spheres. Powders and Grains 97, Proc. of 3rd Internat. Conf., Durham, North Carolina, 18–23 May, 1997, eds. R.P. Behringer and J.T. Jenkins, A.A. Balkema, Rotterdam, 555–558.

    Google Scholar 

  74. Lade, P.V. and Prabucki, M.-J. (1995) Softening and Preshearing Effects in Sand. Soils and Found., Japanese Geotechn. Soc., 35 (4), 93–104.

    Google Scholar 

  75. Leeder, M.R. (1982) Sedimentology: Process and Product. George Allen and Unwin, London.

    Book  Google Scholar 

  76. Lee, I.F. (1956) Design and Application of an Earth Pressure Cell. M.Eng.Sc. thesis, University of Melbourne.

    Google Scholar 

  77. Lee, I.F. and Herington, J.R. (1971) Stresses Beneath Granular Embankments. Proc. 1st Aust.-N.Z. Conf. Geomech. 1, 291–297. and Discussion by D.H. Trollope, B.C. Burman and authors’ reply, 550–554.

    Google Scholar 

  78. Lekhnitskii, S.G. (1963) Theory of Elasticity of an Anisotropie Elastic Body. Holden-Day Inc., San Francisco.

    Google Scholar 

  79. Liffman, K., Chan, D.Y.C. and Hughes, B.D. (1992) Force Distribution in Two-Dimensional Sandpiles. Powder Technology, 72, 255–267.

    Article  Google Scholar 

  80. Love, A.E.H. (1927) A Treatise on the Mathematical Theory of Elasticity. Fourth Ed., Cambridge University Press.

    MATH  Google Scholar 

  81. Luding, S. (1996) Stress Distributions in Static Two Dimensional Granular Model Media in the Absence of Friction. Phys. Rev. E, 55, 4720–4736.

    Google Scholar 

  82. Makino, K. and Kuramitsu, K. (1988) Measurement of the Bulk Density Structure of Granular Materials in a Powder Vessel. Micromechanics of Granular Materials, eds. M. Satake and J.T. Jenkins, Elsevier Science Publishers, Amsterdam, 55–60.

    Google Scholar 

  83. Mehrabadi, M.M., Nemat-Nasser, S., Shodja, H.M. and Subhash, G. (1988) Some Basic Theoretical and Experimental Results on Micromechanics of Granular Flow. Micromechanics of Granular Materials, eds. M. Satake and J.T. Jenkins, Elsevier Science Publishers, Amsterdam, 253–262.

    Google Scholar 

  84. Nadai, A. (1963) Theory of Flow and Fracture of Solids. McGraw Hill, New York.

    Google Scholar 

  85. Oda, M. (1972) Initial Fabrics and Their Relations to Mechanical Properties of Granular Material. Soils and Foundations (Jap. Soc. Soil Mech. Found. Engr.), 12 (1), 17–36.

    Article  Google Scholar 

  86. Oda, M. (1993) Inherent and Induced Anisotropy in Plasticity Theory of Granular Soils. Mech. Mater., 16, 35–45.

    Google Scholar 

  87. Parry, R.H.G. (1954) Measurement of Pressure Distribution Across the Base of Triangular Section Granular Masses. M.Eng.Sc. thesis, University of Melbourne.

    Google Scholar 

  88. Parry, R.H.G. (1995) Mohr Circles, Stress Paths and Geotechnics. E and FN Spon, London.

    Google Scholar 

  89. Peierls, R. (1980) Model-Making in Physics. Contemp. Phys., 21, 3–17.

    Google Scholar 

  90. Penman, A.D.M. (1986) On the Embankment Dam. Géotechnique, 36, 303–348.

    Article  Google Scholar 

  91. Post, H.R. (1974) Against Ideologies. (Inaugural Lecture), London, Chelsea College.

    Google Scholar 

  92. Rankine, W.J.M. (1957) II. On the Stability of Loose Earth. Phil. Trans. Roy. Soc., 147, 9–27.

    Google Scholar 

  93. Ravetz, J.R. (1971) Scientific Knowledge and its Social Problems. Oxford University Press.

    Google Scholar 

  94. Saffman, P.G. (1978) Problems and Progress in the Theory of Turbulence. In Lecture Notes in Physics, Structure and Mechanisms of Turbulence. 76, Ed. H. Fiedler, Springer-Verlag, New York, 273–306.

    Chapter  Google Scholar 

  95. Samsioe, A.F. (1955) Stresses in Downstream Part of an Earth or a Rock Fill Dam. Géotechnique. 5, 200–223.

    Article  Google Scholar 

  96. Savage, S.B., Yong, R.N. and McInnes, D. (1969) Stress Discontinuities in Cohesionless Particulate Materials. Int. J. Mech. Sci., 11, 595–602.

    Google Scholar 

  97. Savage, S.B. and Lun, C.K.K. (1988) Particle Size Segregation in Inclined Chute Flow. Journ. Fluid Mech., 189, 311–335.

    Google Scholar 

  98. Savage, S.B. (1993) Disorder, Diffusion and Structure Formation in Granular Flows. In Disorder and Granular Media, North Holland, Amsterdam, 255–285.

    Google Scholar 

  99. Savage, S.B. (1997) Problems in the Statics and Dynamics of Granular Materials. Powders and Grains 97, Proc. of 3rd Internat. Conf., Durham, North Carolina, 18–23 May, 1997, eds. R.P. Behringer and J.T. Jenkins, A.A. Balkema, Rotterdam, 185–194.

    Google Scholar 

  100. Scott, R.F. (1963) Principles of Soil Mechanics. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  101. Sidoroff, F., Cambou, B. and Mahboubi, A. (1993) Contact Force Distribution in Granular Media. Mech. Mater., 16, 83–89.

    Google Scholar 

  102. Smid, J. and Novosad, J. (1981) Pressure Distribution Under Heaped Bulk Solids. Proc. of 1981 Powtech Conference, Ind. Chem. Eng. Symp. 63, D3/V/1-D3/V/12.

    Google Scholar 

  103. Smith, I.M. and Griffiths, D.V. (1988) Programming the Finite Element Method. John Wiley and Sons, New York.

    MATH  Google Scholar 

  104. Sokolovski, V.V. (1965) Statics of Granular Materials. Pergamon, Oxford.

    Google Scholar 

  105. Sundaram, V. and Cowin, S.C. (1979) A Reassessment of Static Bin Pressure Experiments. Powder Techn., 22, 23–32.

    Article  Google Scholar 

  106. Taylor, D.W. (1947) Review of Pressure Distribution Theories, Earth Pressure Cell Investigations and Pressure Distribution Data, Soil Mechanics Fact Finding Survey - Progress Report, Waterways Experiment Station, Vicksburg, Va.

    Google Scholar 

  107. Terzaghi, K. (1943) Theoretical Soil Mechanics. John Wiley and Son, New York.

    Book  Google Scholar 

  108. Tobita, Y. (1992) Modified Double Slip Model with Fabric Anisotropy for Hardening Behavior of Granular Materials. Advances in Micromechanics of Granular Materials, eds. H.H. Shen, M. Satake, M. Mehrabadhi, C.S. Cheng and C.S. Campbell, Elsevier Science Publishers, Amsterdam, 203–212.

    Google Scholar 

  109. Trollope, D.H. (1956) The Stability of Wedges of Granular Material. Ph.D. thesis, University of Melbourne.

    Google Scholar 

  110. Trollope, D.H. (1957) The Systematic Arching Theory Applied to the Stability Analysis of Embankments. Proc. 4th Intn. Conf. Soil Mech. and Found. Engnr., London, 382–388.

    Google Scholar 

  111. Trollope, D.H. (1968) The Mechanics of Discontinua or Clastic Mechanics in Rock Problems. Chapter 9, Rock Mechanics in Engineering Practice, eds. K.G. Stagg and O.C. Zienkiewicz, John Wiley and Sons, New York, 275–320.

    Google Scholar 

  112. Trollope, D.H. (1975) An Approximate Design Method for Slopes in Strain-softening Materials. Proc. 16th Symp. on Rock Mechanics, University of Minnesota, 45–51.

    Google Scholar 

  113. Trollope, D.H. and Burman, B.C. (1980) Physical and Numerical Experiments with Granular Wedges. Géotechnique. 30, 137–157.

    Article  Google Scholar 

  114. Truesdell, C. (1984) An Idiot’s Fugitive Essays on Science. Springer-Verlag, New York.

    Book  Google Scholar 

  115. Truesdell, C. and Noll, W. (1965) The Non-Linear Field Theories of Mechanics. Handbuch der Physik, ed. S. Flugge, Vol. I1I/3, Springer-Verlag, Berlin.

    Google Scholar 

  116. Truesdell, C. and Toupin, R.A. (1960) The Classical Field Theories. Handbuch der Physik, ed. S. Flugge, Vol. III/1, Springer-Verlag, Berlin, 226–858.

    Google Scholar 

  117. van R. Marais, G. (1969) Stresses in Wedges of Cohesionless Materials Formed by Free Discharge at the Apex. Trans. ASME, J. Eng. Industry. 91, 345–352.

    Google Scholar 

  118. Vardoulakis, I.G. and Sulem, J. (1995) Bifurcation Analysis in Geomechanics. Chapman and Hall, London.

    Google Scholar 

  119. Walton, O.R. (1993) Numerical Simulation of Inelastic, Frictional Particle-Particle Interactions. In Particulate Two-Phase Flows, ed. M.C. Rocco, Butterworth-Heinemann, Boston, 844–911.

    Google Scholar 

  120. Williams, J.C. (1968/69) The Mixing of Dry Powders. Powder Technology, 2, 1320.

    Google Scholar 

  121. Wittmer, J.P., Cates, M.E., Claudin, P. and Bouchaud, J.-P. (1996) An Explanation

    Google Scholar 

  122. for the Central Stress Minimum in Sand Piles. Nature, 382, 336–338.

    Google Scholar 

  123. Wittmer, J.P., Cates, M.E. and Claudin, P. (1997) Stress Propagation and Arching in Static Sandpiles. J. Physique I France, 7, 39–80.

    Article  ADS  Google Scholar 

  124. Wittmer, J.P., Claudin, P., Cates, M.E. and Bouchaud, J.-P. (1997) A New Approach for Stress Propagation in Sandpiles and Silos. Friction, Arching, Contact Dynamics, ed. D.E. Wolf, World Scientific.

    Google Scholar 

  125. Ziman, J. (1995) Prometheus Bound - Science in a Steady State. Cambridge University Press.

    Google Scholar 

  126. Zuckerman, H. and Merton, R.K. (1971) Patterns of Evaluation in Science: Institutionalization, Structure and Functions of the Referee System. Minerva, 9, 66–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Savage, S.B. (1998). Modeling and Granular Material Boundary Value Problems. In: Herrmann, H.J., Hovi, JP., Luding, S. (eds) Physics of Dry Granular Media. NATO ASI Series, vol 350. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2653-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2653-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5039-7

  • Online ISBN: 978-94-017-2653-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics