Skip to main content
Log in

Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles

  • Original Article
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The properties of a sandpile such as angle of repose and stress distribution are affected by many variables, among which particle shape is one of the most important. In this work, ellipsoids which can represent a large range of shapes varying from disk- to cylinder-type are used. The discrete element method is employed in order to conduct controlled numerical experiments. The results confirm the general findings reported in the literature. It also shows that with aspect ratios deviating from 1.0, the angle of repose increases significantly, but disk-type shape and cylinder-type shape follow different variation trends. Empirical correlations between the angle of repose and aspect ratio or sphericity are proposed. The analysis on the stress distribution shows that particle shape affects the magnitude of the normal contact force between particles significantly, with spheres being the smallest. The pressure distribution underneath sandpiles is featured with a relatively constant normal pressure in the central region rather than a dip. It is confirmed that non-spherical particles have more pronounced stress dip than spherical particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Standish, N., Yu, A.B., He, Q.L.: An experimental study of the packing of a coal heap. Powder Technol. 68, 187–193 (1991)

    Article  Google Scholar 

  2. Frette, V., Christensen, K., Malthesorenssen, A., Feder, J., Jossang, T., Meakin, P.: Avalanche dynamics in a pile of rice. Nature (London) 379, 49–52 (1996)

    Article  ADS  Google Scholar 

  3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of \(1/f\) noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  4. Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–381 (1997)

    Article  ADS  Google Scholar 

  5. Baxter, J., Tuzun, U., Heyes, D., Hayati, I., Fredlund, P.: Stratification in poured granular heaps. Nature 391, 136–150 (1998)

    Article  ADS  Google Scholar 

  6. Bates, L.: User Guide to Segregation. British Materials Handling Board Press, UK (1997)

    Google Scholar 

  7. Dury, C.M., Ristow, G.H., Moss, J.L., Nakagawa, M.: Boundary effects on the angle of repose in rotating cylinders. Phys. Rev. A 57, 4491–4497 (1998)

    ADS  Google Scholar 

  8. Zuriguel, I., Mullin, T.: Effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98, 028001 (2007)

    Article  ADS  Google Scholar 

  9. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63, 5728–5770 (2008)

    Article  Google Scholar 

  10. Grasselli, Y., Herrmann, H.J.: On the angles of dry granular heaps. Phys. A 246, 301–312 (1997)

    Article  Google Scholar 

  11. Lee, J., Herrmann, H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A 26, 373–383 (1993)

    Article  ADS  Google Scholar 

  12. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)

    Article  Google Scholar 

  13. Burkalow, A.: Angle of repose and angle of sliding friction: an experimental study. Bull. Geol. Soc. Am. 56, 669–708 (1945)

    Article  Google Scholar 

  14. Dury, C.M., Ristow, G.H., Moss, J.L., Nakagawa, M.: Boundary effects on the angle of repose in rotating cylinders. Phys. Rev. A 57, 4491–4497 (1998)

    ADS  Google Scholar 

  15. Carstensen, J., Chan, P.: Relation between particle size and repose angles of powder. Powder Technol. 15, 129–131 (1976)

    Article  Google Scholar 

  16. Friedman, S.P., Robinson, D.A.: Particle shape characterization using angle of repose measurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour. Res. 38, 1236 (2002)

    ADS  Google Scholar 

  17. Gallas, J.A.C., Sokolowski, S.: Grain non-sphericity effects on the angle of repose of granular material. Int. J. Mod. Phys. B 7, 2037–2046 (1993)

    Article  ADS  Google Scholar 

  18. Vanel, L., Howell, D., Clark, D., Behringer, R.P., Clement, E.: Memories in sand: experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60, R5040–R5043 (1999)

    Article  ADS  Google Scholar 

  19. Trollope, D., Burman, B.: Physical and numerical experiments with granular wedges. Geotechnique 30, 137–157 (1980)

    Article  Google Scholar 

  20. Zhou, Y.C., Xu, B.H., Zou, R.P., Yu, A.B., Zulli, P.: Stress distribution in a sandpile formed on a deflected base. Adv. Powder Technol. 14, 401–410 (2003)

    Article  Google Scholar 

  21. Yong, R.W., Warkentin, B.P.: Soil properties and behaviour. Elsevier Scientific, New York (1975)

    Google Scholar 

  22. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  23. Zuriguel, I., Mullin, T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. Math. Phys. Eng. Sci. 464, 99–116 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. Zhou, C., Ooi, J.Y.: Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41, 707–714 (2009)

    Article  Google Scholar 

  25. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Numerical and experimental studies of the base pressures beneath stockpiles. Granul. Matter 13, 133–141 (2011)

    Article  Google Scholar 

  26. Ai, J., Chen, J.F., Ooi, J.Y.: Finite element simulation of the pressure dip in sandpiles. Int. J. Solids Struct. 50, 981–995 (2013)

    Article  Google Scholar 

  27. Liu, J.G., Sun, Q.C., Jin, F.: The influence of flow rate on the decrease in pressure beneath a conical pile. Powder Technol. 212, 296–298 (2011)

    Article  Google Scholar 

  28. Zhu, J.Y., Liang, Y.Y., Zhou, Y.H.: The effect of the particle aspect ratio on the pressure at the bottom of sandpiles. Powder Technol. 234, 37–45 (2013)

    Article  Google Scholar 

  29. Zhou, Z.Y., Pinson, D., Zou, R.P., Yu, A.B.: Discrete particle simulation of gas fluidization of ellipsoidal particles. Chem. Eng. Sci. 66, 6128–6145 (2011)

    Article  Google Scholar 

  30. Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Dynamic simulation of the packing of ellipsoidal particles. Ind. Eng. Chem. Res. 50, 9787–9798 (2011)

    Article  Google Scholar 

  31. Liu, S.D., Zhou, Z.Y., Pinson, D., Yu, A.B.: Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol. 253, 70–79 (2014)

    Article  Google Scholar 

  32. Dziugys, A., Peters, B.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Matter 3, 231–265 (2001)

    Article  Google Scholar 

  33. Lin, X., Ng, T.T.: Contact detection algorithms for 3-dimensional ellipsoids in discrete element modeling. Int. J. Numer. Anal. Methods Geomech. 19, 653–659 (1995)

    Article  MATH  Google Scholar 

  34. Lin, X., Ng, T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Geotechnique 47, 319–329 (1997)

    Article  Google Scholar 

  35. Cundall, P.A., Strack, O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  36. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3396 (2007)

    Article  Google Scholar 

  37. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  38. Langston, P.A., Tuzun, U., Heyes, D.M.: Continuous potential discrete particle simulations of stress and velocity-fields in hoppers—transition from fluid to granular flow. Chem. Eng. Sci. 49, 1259–1275 (1994)

    Article  Google Scholar 

  39. Hertz, H.: Über die Berührung fester elastischer Körper. Journal fur die reine und angewandte Mathematik 92, 156–171 (1882)

    MATH  Google Scholar 

  40. Zheng, Q.J., Zhou, Z.Y., Yu, A.B.: Contact forces between viscoelastic ellipsoidal particles. Powder Technol. 248, 25–33 (2013)

    Article  Google Scholar 

  41. Harris, W.F.: Curvature of ellipsoids and other surfaces. Ophthalmic Physiol. Opt. 26, 497–501 (2006)

    Article  Google Scholar 

  42. Goldstein, H.: Classical Mechanics. Addison-Wesley Publishing Company, Reading (1980)

    MATH  Google Scholar 

  43. Carrigy, M.: Experiments on the angles of repose of granular materials. Sedimentology 14, 147–158 (1970)

    Article  ADS  Google Scholar 

  44. Kalman, H., Goder, D., Rivken, M., Ben-Dor, G.: The effect of the particle–surface friction coefficient on the angle of repose. Bulk Solids Handl. 13, 123–128 (1993)

    Google Scholar 

  45. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: Numerical investigation of the angle of repose of monosized spheres. Phys. Rev. E 64, 021301/1-8 (2001)

  46. Donev, A., Cisse, I., Sachs, D., Variano, E., Stillinger, F.H., Connelly, R., Torquato, S., Chaikin, P.M.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)

    Article  ADS  Google Scholar 

  47. Klamkin, M.S.: Elementary approximations to the area of n-dimensional ellipsoids. Am. Math. Mon. 78, 280–283 (1971)

    Article  MATH  Google Scholar 

  48. Klamkin, M.S.: Corrections to “Elementary approximations to the area of n-dimensional ellipsoids”. Am. Math. Mon. 83, 478 (1976)

    Article  MATH  Google Scholar 

  49. Mio, H., Komatsuki, S., Akashi, M., Shimosaka, A., Shirakawa, Y., Hidaka, J., Kadowaki, M., Yokoyama, H., Matsuzaki, S., Kunitomo, K.: Analysis of traveling behavior of nut coke particles in bell-type charging process of blast furnace by using discrete element method. ISIJ Int. 50, 1000–1009 (2010)

    Article  Google Scholar 

  50. Dantu, P.: Statistical study of intergranular forces in a powdery medium. Geotechnique 18, 50–55 (1968)

    Article  Google Scholar 

  51. Coppersmith, S.N.: Force fluctuations in granular media. Phys. D 107, 183–185 (1997)

    Article  Google Scholar 

  52. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995)

  53. Schellart, W.P.: Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics 324, 1–16 (2000)

    Article  ADS  Google Scholar 

  54. Santamarina, J.C., Cho, G.C.: Soil behaviour: the role of particle shape. In: Proceedings of Skempton Conference, March, London, pp. 1–14 (2004)

  55. Wittmer, J., Claudin, P., Cates, M.E., Bouchaud, J.P.: A new approach to stress propagation in sandpiles and silos. Nature (London) 382, 336–338 (1996)

    Article  ADS  Google Scholar 

  56. Savage, S.: Problems in the statics and dynamics of granular materials. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains, pp. 185–194. Balkema, Rotterdam (1997)

    Google Scholar 

  57. Huntley, J.M.: Force distribution in an inhomogeneous sandpile. Eur. Phys. J. B. 8, 389–397 (1999)

    Article  ADS  Google Scholar 

  58. Li, Y.J., Xu, Y., Thornton, C.: A comparison of discrete element simulations and experiments for sandpiles composed of spherical particles. Powder Technol. 160, 219–228 (2005)

    Article  Google Scholar 

  59. Brockbank, R., Huntley, J.M., Ball, R.C.: Contact force distribution beneath a three dimensional granular pile. J. Phys. II (Paris) 7, 1521–1532 (1997)

    Google Scholar 

  60. Zheng, Q.J., Yu, A.B.: Why have continuum theories previously failed to describe sandpile formation? Phys. Rev. Lett. 113, 068001 (2014)

Download references

Acknowledgments

The authors are grateful to the Australian Research Council (ARC) and BlueScope Steel Research for the financial support of this work, and the NCI National Facility for the support in computation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z.Y., Zou, R.P., Pinson, D. et al. Angle of repose and stress distribution of sandpiles formed with ellipsoidal particles. Granular Matter 16, 695–709 (2014). https://doi.org/10.1007/s10035-014-0522-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0522-4

Keywords

Navigation