Skip to main content
Log in

Experimental and numerical investigations of dissipation mechanisms in particle dampers

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Particle dampers are passive devices allowing strong damping of structures vibrating in harsh environment. We investigate the energy dissipation in a rigid enclosure attached to a shaker and partially filled with particles. Our experiments match an analytical description, which we corroborate then with discrete element method simulations. We show that the loss factor does not depend on the material of the particles or their number, but heavily relies on the total mass of the embedded grains and on the driving magnitude only. Our measurements reveal the contribution of the viscous flow of air surrounding the grains to the overall loss factor of the dampers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paget, A.: Vibration in steam turbine bucket sand damping by impact. Engineering 143, 305–307 (1937)

    Google Scholar 

  2. Panossian, H.V.: Non-obstructive particle damping experience and capabilities. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 4753(2), pp. 936–941 (2002)

  3. Xia, Z., Liu, X., Shan, Y.: Application of particle damping for vibration attenuation in brake drum. Int. J. Veh. Noise Vib. 7, 178–194 (2011)

    Article  Google Scholar 

  4. Velichkovich, A.S., Velichkovich, S.V.: Vibrationimpact damper for controlling the dynamic drillstring conditions. Chem. Pet. Eng. 37, 213–215 (2001)

    Article  Google Scholar 

  5. Salueña, C., Pöschel, T., Espiov, S.E.: Dissipative properties of granular materials. Phys. Rev. E 59, 44224425 (1999)

    Article  Google Scholar 

  6. Bai, X.-M., Keer, L.M., Wang, Q.J., Snurr, R.Q.: Investigation of particle damping mechanism via particle dynamics simulations. Granul. Matter 11, 417–429 (2009)

    Article  MATH  Google Scholar 

  7. Araki, Y., Yokomichi, I., Inoue, J.: Impact dampers with granular materials: 2nd report, both sides impact in a vertical oscillating system. Bull. Jpn. Soc. Mech. Eng. 28(241), 1466–1472 (1985)

    Article  Google Scholar 

  8. Papalou, A., Masri, S.F.: Response of impact dampers with granular materials under random excitation. Earthq. Eng. Struct. Dyn. 25, 253–267 (1996)

    Article  Google Scholar 

  9. Papalou, A., Masri, S.F.: An experimental investigation of particle dampers under harmonic excitation. J. Vib. Control 4, 361–379 (1998)

    Article  Google Scholar 

  10. Friend, R.D., Kinra, V.K.: Particle impact damping. J. Sound Vib. 233, 93–118 (2000)

    Article  ADS  Google Scholar 

  11. Marhadi, K.S., Kinra, V.K.: Particle impact damping: effect of mass ratio, material and shape. J. Sound Vib. 283, 433–448 (2005)

    Article  ADS  Google Scholar 

  12. Trigui, M., Foltete, E., Abbes, M.S., Fakhfakh, T., Bouhaddi, N., Haddar, M.: An experimental study of a multi-particle impact damper. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 223(9), 2029–2038 (2009)

    Article  Google Scholar 

  13. Ben Romdhane, M., Bouhaddi, N., Trigui, M., Foltete, E., Haddar, M.: The loss factor experimental characterisation of the non-obstructive particles damping approach. Mech. Syst. Signal Process. 38(2), 585–600 (2013)

    Article  ADS  Google Scholar 

  14. Sack, A., Heckel, M., Kollmer, J.E., Pöschel, T.: Probing the validity of an effective-one-particle description of granular dampers in microgravity. Granul. Matter 17, 73–82 (2015)

    Article  Google Scholar 

  15. Pacheco-Vázquez, F., Dorbolo, S.: Rebound of a confined granular material: combination of a bouncing ball and a granular damper. Sci. Rep. 3, 2158 (2013)

    ADS  Google Scholar 

  16. Sánchez, M., Pugnaloni, L.A.: Effective mass overshoot in single degree of freedom mechanical systems with a particle damper. J. Sound Vib. 330(24), 5812–5819 (2011)

    Article  ADS  Google Scholar 

  17. Sánchez, M., Rosenthal, G., Pugnaloni, L.A.: Universal response of optimal granular damping devices. J. Sound Vib. 331(20), 4389–4394 (2012)

    Article  ADS  Google Scholar 

  18. Sánchez, M., Carlevaro, C.M.: Nonlinear dynamic analysis of an optimal particle damper. J. Sound Vib. 332(8), 2070–2080 (2013)

    Article  ADS  Google Scholar 

  19. Mehta, A., Luck, J.M.: Novel temporal behavior of a nonlinear dynamical system: the completely inelastic bouncing ball. Phys. Rev. Lett. 65(4), 393 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Douady, S., Fauve, S., Laroche, C.: Subharmonic instabilities and defects in a granular layer under vertical vibrations. Europhys. Lett. 8(7), 621–627 (1989)

    Article  ADS  Google Scholar 

  21. Pastor, J.M., Maza, D., Zuriguel, I., Garcimartín, A., Boudet, J.-F.: Time resolved particle dynamics in granular convection. Phys. D 232(2), 128–135 (2007)

    Article  Google Scholar 

  22. Géminard, J.-C., Laroche, C.: Energy of a single bead bouncing on a vibrating plate: experiments and numerical simulations. Phys. Rev. E 68, 031305 (2003)

    Article  ADS  Google Scholar 

  23. Chastaing, J.-Y., Bertin, E., Géminard, J.-C.: Dynamics of bouncing ball. Am. J. Phys. 83(6), 518–524 (2015)

    Article  ADS  Google Scholar 

  24. Géminard, J.-C., Laroche, C.: Pressure measurement in two-dimensional horizontal granular gases. Phys. Rev. E 70, 021301 (2004)

    Article  ADS  Google Scholar 

  25. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 96 edn. CRC Press/Taylor and Francis, Boca Raton (2016)

  26. McNamara, S., Young, W.R.: Inelastic collapse and clumping in a onedimensional granular medium. Phys. Fluids A 4, 496–504 (1992)

    Article  ADS  Google Scholar 

  27. Sen, S., Mohan, T.R.K., Pfannes, J.M.M.: The quasi-equilibrium phase in nonlinear 1d systems. Phys. A 342, 336–343 (2004)

    Article  Google Scholar 

  28. Job, S., Melo, F., Sokolow, A., Sen, S.: Solitary wave trains in granular chains: experiments, theory and simulations. Granul. Matter 10, 13–20 (2007)

    Article  MATH  Google Scholar 

  29. Windows-Yule, C.R.K., Rosato, A.D., Thornton, A.R., Parker, D.J.: Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems. New J. Phys. 17(2), 023015 (2015)

    Article  ADS  Google Scholar 

  30. Pastenes, J.C., Géminard, J.-C., Melo, F.: Interstitial gas effect on vibrated granular columns. Phys. Rev. E 89, 062205 (2014)

    Article  ADS  Google Scholar 

  31. Allard, J.F., Henry, M., Tizianel, J., Kelders, L., Lauriks, W.: Sound propagation in air-saturated random packings of beads. J. Acoust. Soc. Am. 104(4), 2004–2007 (1998)

    Article  ADS  Google Scholar 

  32. Dazel, O., Tournat, V.: Nonlinear biot waves in porous media with application to unconsolidated granular media. J. Acoust. Soc. Am. 127(2), 692–702 (2010)

    Article  Google Scholar 

  33. Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  ADS  MATH  Google Scholar 

  34. Cundall, P., Strack, O.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  35. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade Documentation. In: Šmilauer, V. (Ed.) The Yade Project, 1st edn (2010). http://yade-dem.org/doc/

  36. Hertz, H.: Über die berührung fester elastischer körper. J. Reine Angew. Math. 92, 156–171 (1881)

    MathSciNet  Google Scholar 

  37. Popov, V.L.: Contact Mechanics and Friction. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  38. Tsuji, Y., Tanaka, T., Ishida, T.: Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  39. Antypov, D., Elliott, J.A.: On an analytical solution for the damped hertzian spring. Europhys. Lett. 94(5), 50004 (2011)

    Article  ADS  Google Scholar 

  40. Falcon, E., Laroche, C., Fauve, S., Coste, C.: Collision of a 1-d column of beads with a wall. Eur. Phys. J. B 5, 111–131 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. B. Nennig for useful discussions on permeability of poro-granular media. The authors thanks Dr. L. A. Pugnaloni for the constructive comments on our manuscript. First author is grateful to Supméca for financial support during her stays in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Job.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, M., Job, S., Abbes, M.S. et al. Experimental and numerical investigations of dissipation mechanisms in particle dampers. Granular Matter 18, 71 (2016). https://doi.org/10.1007/s10035-016-0667-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0667-4

Keywords

Navigation