Skip to main content
Log in

Solitary wave trains in granular chains: experiments, theory and simulations

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The features of solitary waves observed in horizontal monodisperse chain of barely touching beads not only depend on geometrical and material properties of the beads but also on the initial perturbation provided at the edge of the chain. An impact of a large striker on a monodisperse chain, and similarly a sharp decrease of bead radius in a stepped chain, generates a solitary wave train containing many single solitary waves ordered by decreasing amplitudes. We find, by simple analytical arguments, that the unloading of compression force at the chain edge has a nearly exponential decrease. The characteristic time is mainly a function involving the grains’ masses and the striker mass. Numerical calculations and experiments corroborate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nesterenko V.F. (1983). Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Technol. Phys. 24: 733–743

    Article  ADS  Google Scholar 

  2. Lazaridi A.N. and Nesterenko V.F. (1985). Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Technol. Phys. 26: 405–408

    Article  ADS  Google Scholar 

  3. Sinkovits R.S. and Sen S. (1995). Nonlinear dynamics in granular columns. Phys. Rev. Lett. 74: 2686

    Article  ADS  Google Scholar 

  4. Sen S. and Sinkovits R.S. (1996). Sound propagation in impure granular columns. Phys. Rev. E 54: 6857

    Article  ADS  Google Scholar 

  5. Coste C., Falcon E. and Fauve S. (1997). Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56: 6104–6117

    Article  ADS  Google Scholar 

  6. Sen S., Manciu M. and Wright J.D. (1998). Solitonlike pulses in perturbed and driven Hertzian chains and their possible applications in detecting buried impurities. Phys. Rev. E 57: 2386–2397

    Article  ADS  Google Scholar 

  7. Nesterenko V.F. (2001). Dynamics of Heterogeneous Materials. Springer, New York

    Google Scholar 

  8. Sen S. and Manciu M. (2001). Solitary wave dynamics in generalized Hertz chains: An improved solution of the equation of motion. Phys. Rev. E 64: 056605

    Article  ADS  Google Scholar 

  9. Job S., Melo F., Sokolow A. and Sen S. (2005). How solitary waves interact with boundaries in a 1d granular medium. Phys. Rev. Lett. 94: 178002

    Article  ADS  Google Scholar 

  10. Sokolow A., Bittle E.G. and Sen S. (2007). Formation of solitary wave trains in granular alignments. Europhys. Lett. 77: 24002

    Article  ADS  Google Scholar 

  11. Herrmann F. and Schmälzle P. (1981). Simple explanation of a well-known collision experiment. Am. J. Phys. 49: 761–764

    Article  ADS  Google Scholar 

  12. Herrmann F. and Seitz M. (1982). How does the ball-chain work?. Am. J. Phys. 50: 977–981

    Article  ADS  Google Scholar 

  13. Falcon E., Laroche C., Fauve S. and Coste C. (1998). Collision of a 1D column of beads with a wall. Eur. Phys. J. B 5: 111–131

    Article  ADS  Google Scholar 

  14. Nesterenko V.F., Daraio C., Herbold E. and Jin S. (2005). Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95: 158702

    Article  ADS  Google Scholar 

  15. Daraio C., Nesterenko V.F., Herbold E.B. and Jin S. (2006). Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96: 058002

    Article  ADS  Google Scholar 

  16. Daraio C., Nesterenko V.F., Herbold E.B. and Jin S. (2006). Pulse mitigation by a composite discrete medium. J. Phys. IV 134: 473–479

    Article  Google Scholar 

  17. Nesterenko V.F. (1994). Solitary waves in discrete media with anomalous compressibility and similar to “sonic vacuum”. J. Phys. IV 4: C8–729

    Article  Google Scholar 

  18. Nesterenko V.F., Lazaridi A.N. and Sibiryakov E.B. (1995). The decay of soliton at the contact of two “acoustic vacuums”. J. Appl. Mech. Technol. Phys. 36: 166–168

    Article  ADS  Google Scholar 

  19. Sen S., Manciu F.S. and Manciu M. (2001). Thermalizing an impulse. Phys. A 299: 551

    Article  MATH  Google Scholar 

  20. Sokolow A., Pfannes J.M., Doney R.L., Nakagawa M., Agui J.H. and Sen S. (2005). Absorption of short duration pulses by small, scalable, tapered granular chains. Appl. Phys. Lett. 87: 254104

    Article  Google Scholar 

  21. Doney R.L. and Sen S. (2005). Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72: 041304

    Article  ADS  Google Scholar 

  22. Melo F., Job S., Santibanez F. and Tapia F. (2006). Experimental evidence of shock mitigation in a Hertzian tapered chain. Phys. Rev. E 73: 041305

    Article  ADS  Google Scholar 

  23. Doney R.L. and Sen S. (2006). The decorated, tapered, highly nonlinear granular chain. Phys. Rev. Lett 97: 155502

    Article  ADS  Google Scholar 

  24. Hertz H. (1881). Über die berührung fester elastischer körper. J. Reine Angew. Math. 92: 156–171

    Google Scholar 

  25. Chatterjee A. (1999). Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59: 5912–5919

    Article  ADS  Google Scholar 

  26. Landau L.D., Lifshitz E.M. (1967) Theorie de l’élasticité. Mir, Moscou, 2nd edn (in French)

  27. Daraio C., Nesterenko V., Jin S. (2004) Strongly nonlinear waves in 3d phononic crystals. In: Furnish, M.D., Gupta, Y.M., Forbes, J.W. (eds.) Shock compression of condensend matter—2003, Proceedings of the conference of the American physical society topical group on shock compression of condensed matter, vol 706, pp. 197–200, AIP

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Job.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Job, S., Melo, F., Sokolow, A. et al. Solitary wave trains in granular chains: experiments, theory and simulations. Granular Matter 10, 13–20 (2007). https://doi.org/10.1007/s10035-007-0054-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0054-2

Keywords

Navigation