Skip to main content
Log in

Probing the validity of an effective-one-particle description of granular dampers in microgravity

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We consider the attenuation of the oscillation of a flat spring due to the action of a granular damper. The efficiency of the damper is quantified by evaluating the position of the oscillator as a function of time using a Hall effect based position sensor. Performing experiments for a large abundance of parameters under conditions of microgravity, we confirm a recent theory for granular damping (Kollmer et al. in New J Phys 15:093023, 2013) and show that the theory remains approximately valid even beyond the limits of its derivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kollmer, J.E., Sack, A., Heckel, M., Pöschel, T.: Relaxation of a spring with an attached granular damper. New J. Phys. 15, 093023 (2013)

    Article  ADS  Google Scholar 

  2. Renard, S., Salueña, C., Schwager, T., Pöschel, T.: Vertically shaken column of spheres. Onset of fluidization. Eur. Phys. J. E 4, 233 (2000)

    Article  Google Scholar 

  3. Pöschel, T., Schwager, T., Salueña, C.: Onset of fluidization in vertically shaken granular material. Phys. Rev. E 62, 1361 (2000)

    Article  ADS  Google Scholar 

  4. Heckel, M., Sack, A., Kollmer, J.E., Pöschel, T.: Fluidization of a horizontally driven granular monolayer. Preprint (2014)

  5. Murdoch, N., Rozitis, B., Nordstrom, K., Green, F., Michel, P., de Lophem, T.-L., Losert, W.: Granular convection in microgravity. Phys. Rev. Lett. 110, 018307 (2013)

    Article  ADS  Google Scholar 

  6. Murdoch, N., Rozitis, B., Green, F., de Lophem, T.-L., Michel, P., Losert, W.: Granular shear flow in varying gravitational environments. Granul. Matter 15, 129–137 (2013)

    Article  Google Scholar 

  7. Falcon, E., Wunenburger, R., Evesque, P., Fauve, S., Chabot, C., Garrabos, Y., Beysens, D.: Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys. Rev. Lett. 83, 440 (1999)

    Article  ADS  Google Scholar 

  8. Tatsumi, S., Murayama, Y., Hayakawa, H., Sanoi, M.: Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521 (2009)

    Article  ADS  MATH  Google Scholar 

  9. Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. Europhys. Lett. 86, 60007 (2009)

    Article  ADS  Google Scholar 

  10. Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)

    Article  ADS  Google Scholar 

  11. Chen, Y.-P., Evesque, P., Hou, M.-Y.: Breakdown of energy equipartition in vibro-fluidized granular media in micro-gravity. Chin. Phys. Lett. 29, 074501 (2012)

    Article  ADS  Google Scholar 

  12. Hou, M., Liu, R., Zhai, G., Sun, Z., Lu, K., Garrabos, Y., Evesque, P.: Velocity distribution of vibration-driven granular gas in Knudsen regime in microgravity. Microgravity Sci. Technol. 20, 73 (2008)

    Article  Google Scholar 

  13. Leconte, M., Garrabos, Y., Falcon, E., Lecoutre-Chabot, C., Palencia, F., Evesque, P., Beysens, D.: Microgravity experiments on vibrated granular gases in a dilute regime: non-classical statistics. J. Stat. Mech. 2006(07), P07012 (2006)

    Article  Google Scholar 

  14. Zeng, X., Agui, J.H., Nakagawa, M.: Wave velocities in granular materials under microgravity. J. Aerospace Eng. 20, 116 (2007)

    Article  Google Scholar 

  15. Kielb, R., Macri, F.G., Oeth, D., Nashif, A.D., Macioce, P., Panossian, H., and Lieghley, F.L Advanced damping systems for fan and compressor blisks. In: Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference, Monterey, CA (1999)

  16. Yu, P., Frank-Richter, S., Börngen, A., Sperl, M.: Monitoring three-dimensional packings in microgravity. Granul. Matter 16, 165 (2014)

    Article  Google Scholar 

  17. Paget, A.L.: Vibration in steam turbine buckets and damping by impacts. Engineering 143, 305–307 (1937)

    Google Scholar 

  18. Xia, Z., Liu, X., Shan, Y.: Application of particle damping for vibration attenuation in brake drum. Int. J. Veh. Noise Vib. 7(2), 178–194 (2011)

    Article  Google Scholar 

  19. Heckel, M., Sack, A., Kollmer, J.E., Pöschel, T.: Granular dampers for the reduction of vibrations of an oscillatory saw. Phys. A 391, 4442–4447 (2012)

    Article  Google Scholar 

  20. Norcross, J.C.: Dead-blow hammer head. U.S. Patent No. 3343576 (1967)

  21. Ryzhkov, D.I.: Vibration damper for metal cutting. Eng. Dig. 14, 246 (1953)

    Google Scholar 

  22. Sommer, R.: Sports equipment for ball games having an improved attenuation of oscillations and kick-back pulses and an increased striking force. U.S. Patent No. 5454562 (1995)

  23. Ashley, S.: A new racket shakes up tennis. Mech. Eng. 117, 80–81 (1995)

    Google Scholar 

  24. Rocke, R.D., Masri, S.F.: Application of a single-unit impact damper to an antenna structure. Shock Vib. Bull. 39, 1–10 (1969)

    Google Scholar 

  25. Simonian, S.S.: Particle beam damper. SPIE 2445, 149–160 (1995)

    ADS  Google Scholar 

  26. Chan, K.W., Liao, W.H., Wang, M.Y., Choy, P.K.: Experimental studies for particle damping on a bond arm. J. Vib. Control 12, 297–312 (2006)

    Article  Google Scholar 

  27. Panossian, H.V.: Structural damping enhancement via non-obstructive particle damping technique. J. Vib. Acoust. 114(1), 101–105 (1992)

    Article  Google Scholar 

  28. Simonian, S.S.: Particle damping applications. In: Collection of Technical Papers -AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 6, 4145–4161 (2004)

  29. Sack, A., Heckel, M., Kollmer, J.E., Zimber, F., Pöschel, T.: Energy dissipation in driven granular matter in the absence of gravity. Phys. Rev. Lett. 111, 018001 (2013)

    Article  ADS  Google Scholar 

  30. Kollmer, J.E., Sack, A., Heckel, M., Zimber, F., Müller, P., Bannerman, M.N., Pöschel, T.: Collective granular dynamics in a shaken container at low gravity conditions. AIP Conf. Proc. 1542, 811 (2013)

    Article  ADS  Google Scholar 

  31. Marhadi, K.S., Kinra, V.K.: Particle impact damping: effect of mass ratio, material, and shape. J. Sound Vib. 283, 433–448 (2005)

    Article  ADS  Google Scholar 

  32. Ham, A., Wang, J., Stammer, J.G.: Relationships between particle shape characteristics and macroscopic damping in dry sands. J. Geotech. Geoenv. Eng. 138, 1002 (2012)

  33. Sadek, M.M., Mills, B.: Effect of gravity on the performance of an impact damper: aprt 1. Steady-state motion. J. Mech. Eng. Sci. 12, 268–277 (1970)

  34. Sadek, M.M., Williams, C.J.H.: Effect of gravity on the performance of an impact damper: Part 2. Stability of vibrational modes. J. Mech. Eng. Sci. 12(4), 278–287 (1970)

    Article  Google Scholar 

  35. Salueña, C., Pöschel, T., Esipov, S.E.: Dissipative properties of vibrated granular materials. Phys. Rev. E 59(4), 4422–4425 (1999)

    Article  ADS  Google Scholar 

  36. Yang, M.Y.: Development of master desing curves for particle impact dampers. Ph.D thesis, Pennsylvania State University (2003)

  37. Bai, X.-M., Keer, L.M., Wang, Q.J., Snurr, R.Q.: Investigation of particle damping mechnaism via particle dynamics simulation. Granul. Matter 11, 417–429 (2009)

    Article  MATH  Google Scholar 

  38. Sánchez, M., Pugnaloni, L.A.: Effective mass overshoot in single degree of freedom mechanical systems with a aparticle damper. J. Sound Vib. 330(24), 5812–5819 (2011)

    Article  ADS  Google Scholar 

  39. Sánchez, M., Rosenthal, G., Pugnaloni, L.A.: Universal response of optimal granular damping devices. J. Sound Vib. 331(20), 4389–4394 (2012)

    Article  ADS  Google Scholar 

  40. Sánchez, M., Carlevaro, C.M.: Nonlinear dynamic analysis of an optimal particle damper. J. Sound Vib. 332, 2070 (2013)

    Article  ADS  Google Scholar 

  41. Cui, Z., Wu, J.H., Chen, H., Li, D.: A quantitaive analysis on the energy dissipation mechanism of the non-obstructive particle damping technology. J. Sound Vib. 330, 2449–2456 (2011)

    Article  ADS  Google Scholar 

  42. Bannerman, M.N., Kollmer, J.E., Sack, A., Heckel, M., Müller, P., Pöschel, T.: Movers and shakers: granular damping in microgravity. Phys. Rev. E 84, 011301 (2011)

    Article  ADS  Google Scholar 

  43. Salueña, C., Esipov, S.E., Pöschel, T., Simonian, S.: Dissipative properties of granular ensembles. SPIE 3327, 23 (1998)

    ADS  Google Scholar 

  44. Opsomer, E., Ludewig, F., Vandewalle, N.: Phase transitions in vibrated granular systems in microgravity. Phys. Rev. E 84, 051306 (2011)

    Article  ADS  Google Scholar 

  45. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  46. Luding, S. (1994) Models and Simulations of Granular Materials. PhD thesis, Universität Freiburg

  47. iC Haus, Bodenheim, Germany.: ML datasheet A3 en, Rev A3 edition (2014)

  48. Kollmer, J.E., Tupy, M., Heckel, M., Sack, A., Pöschel, T.: Absence of subharmonic response in vibrated granular systems. Preprint (2014)

Download references

Acknowledgments

The European Space Agency (ESA) and the German Aerospace Center (DLR) are gratefully acknowledged for funding the parabolic flights. We thank the German Science Foundation (DFG) for support through the Cluster of Excellence ’Engineering of Advanced Materials’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Pöschel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sack, A., Heckel, M., Kollmer, J.E. et al. Probing the validity of an effective-one-particle description of granular dampers in microgravity. Granular Matter 17, 73–82 (2015). https://doi.org/10.1007/s10035-014-0539-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0539-8

Keywords

Navigation