Skip to main content

Advertisement

Log in

Microwave synthesis of NiSe2 nanomaterials on carbon fiber felt for flexible supercapacitors and oxygen evolution reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, NiSe2 materials were synthesized on carbon fiber felts (CFF) using a convenient one-step microwave approach. Self-supporting NiSe2/CFF is a bifunctional active material with outstanding supercapacitive behavior and oxygen evolution reaction (OER) electrocatalytic activity. For supercapacitors, the NiSe2/CFF electrode material has a specific capacitance (Cs) of 1125.4 F−1 (1 A g−1) and capacitance retention of about 97.4% (50,000 cycles). Furthermore, the flexible asymmetric supercapacitor (FASC) assembled used NiSe2/CFF electrode as cathode exhibited an excellent cycle life (89% retention after 20,000 cycles). In terms of OER electrocatalysis, NiSe2/CFF material shows lower Tafel slope (54.4 mV de−1), an overpotential (144.7 mV), and remarkable cycling activity. The NiSe2/CFF materials synthesized in this study show attractive potential for practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang D-G, Qiu T, Guo W, Liang Z, Tabassum H, Xia D, Zou R (2021) Covalent organic framework-based materials for energy applications. Energy Environ Sci 14(2):688–728

    Article  CAS  Google Scholar 

  2. Stigka EK, Paravantis JA, Mihalakakou GK (2014) Social acceptance of renewable energy sources: a review of contingent valuation applications. Renew Sustain Energy Rev 32:100–106

    Article  Google Scholar 

  3. Kannan N, Vakeesan D (2016) Solar energy for future world: - a review. Renew Sustain Energy Rev 62:1092–1105

    Article  Google Scholar 

  4. Liu H, Guo H, Wu N, Yao W, Xue R, Wang M, Yang W (2021) Rational design of nickel-cobalt selenides derived from multivariate bimetal metal-organic frameworks for high-performance asymmetric supercapacitor. J Alloy Compd 856:156535–156548

    Article  CAS  Google Scholar 

  5. Theerthagiri J, Karuppasamy K, Durai G, Rana A, Arunachalam P, Sangeetha K, Kuppusami P, Kim HS (2018) Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials (Basel) 8(4)

  6. Miaoa C, Xua P, Zhao J, Zhua K, Cheng K, Ye K, Yan J, Cao D, Wang G, Zhang X (2019) Binder-free hierarchical urchin-like manganese-cobalt selenide with high electrochemical energy storage performance. ACS Appl Energy Mater 2(5):3595–3604

    Article  Google Scholar 

  7. Younas W, Naveed M, Cao C, Khalid S, Rafai S, Wang Z, Wu Y, Yang L (2020) Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor. Appl Surf Sci 505:144618–144625

    Article  CAS  Google Scholar 

  8. Afif A, Rahman SMH, Tasfiah Azad A, Zaini J, Islan MA, Azad AK (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage – a review. J Energy Storage 25:100582–100876

    Article  Google Scholar 

  9. Lin S, Wang F, Shao Z (2020) Biomass applied in supercapacitor energy storage devices. J Mater Sci 56(3):1943–1979

    Article  Google Scholar 

  10. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Advances 1(8):2817–2827

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Wu X, Han Y, Li T (2021) Flexible supercapacitor: overview and outlooks. J Energy Storage 42:103052–103067

    Article  Google Scholar 

  12. Younas W, Naveed M, Cao C, Zhu Y, Du C, Ma X, Mushtaq N, Tahir M (2022) Naeem M Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. J Colloid Interface Sci 608(1):1005–1014

    Article  CAS  PubMed  Google Scholar 

  13. Jin F, Li M, Xie L, Jiang J (2021) Selenium-doped carbon nanotubes/nickel selenide coaxial nanocables for energy storage. J Power Sources 514:230587–230596

    Article  CAS  Google Scholar 

  14. Li H, Gong J, Li J-C, Zhang X, Tang C, Yao H, Ding Q (2020) Synthesis of nickel selenide thin films for high performance all-solid-state asymmetric supercapacitors. Chin Chem Lett 31(9):2275–2279

    Article  CAS  Google Scholar 

  15. Lu M, Yuan X-P, Guan X-H, Wang G-S (2017) Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes. J Mater Chem A 5(7):3621–3627

    Article  CAS  Google Scholar 

  16. Chang A, Zhang C, Yu Y, Yu Y, Zhang B (2018) Plasma-assisted synthesis of NiSe2 ultrathin porous nanosheets with selenium vacancies for supercapacitor. ACS Appl Mater Interfaces 10(49):41861–41865

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Li W, Xin L, Wu M, Long Y, Huang H, Lou X (2017) Facile synthesis of truncated cube-like NiSe2 single crystals for high-performance asymmetric supercapacitors. Chem Eng J 330:1334–1341

    Article  CAS  Google Scholar 

  18. Zhu J, Sun W, Yang D, Zhang Y, Hoon HH, Zhang H, Yan Q (2015) Multifunctional architectures constructing of PANI nanoneedle arrays on MoS2 thin nanosheets for high-energy supercapacitors. Small 11(33):4123–4129

    Article  CAS  PubMed  Google Scholar 

  19. Yan H, Zhang D, Xu J, Lu Y, Liu Y, Qiu K, Zhang Y, Luo Y (2014) Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res Lett 9:424–431

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oakes L, Westover A, Mares JW, Chatterjee S, Erwin WR, Bardhan R, Weiss SM, Pint CL (2013) Surface engineered porous silicon for stable, high performance electrochemical supercapacitors. Sci Rep 3:3020–3027

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han L, Huang H, Fu X, Li J, Yang Z, Liu X, Pan L, Xu M (2020) A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 392:123733–123740

    Article  CAS  Google Scholar 

  22. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13(7):3135–3139

    Article  CAS  PubMed  Google Scholar 

  23. Padmanathan N, Selladurai S, Razeeb KM (2015) Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte. RSC Adv 5(17):12700–12709

    Article  CAS  Google Scholar 

  24. Ji Z, Li N, Xie M, Shen X, Dai W, Liu K, Xu K, Zhu G (2020) High-performance hybrid supercapacitor realized by nitrogen-doped carbon dots modified cobalt sulfide and reduced graphene oxide. Electrochim Acta 334:135632–135641

    Article  CAS  Google Scholar 

  25. Choi K, Moon IK, Oh J (2019) An efficient amplification strategy for N-doped NiCo2O4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. J Mater Chem A 7(4):1468–1478

    Article  CAS  Google Scholar 

  26. Niu Q, Feng Z, Gao K, Tang Q, Sun X, Wang L (2021) A composite mesh of N-doped carbon/polyaniline nanowire arrays for a flexible self-supporting interdigital solid supercapacitor. J Electron Mater 50(7):4222–4229

    Article  CAS  Google Scholar 

  27. Gao Y, Wei Z, Xu J (2020) High-performance asymmetric supercapacitor based on 1T-MoS2 and MgAl-layered double hydroxides. Electrochim Acta 330:135195–135203

    Article  CAS  Google Scholar 

  28. Xu Y-Z, Yuan C-Z, Chen X-P (2016) Co-doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Adv 6(108):106832–106836

    Article  CAS  Google Scholar 

  29. Sun Y-Y, Zhu Y-X, Wu L-K, Hou G-Y, Tang Y-P, Cao H-Z, Zheng G-Q (2020) Hierarchical NiSe@Ni nanocone arrays electrocatalyst for oxygen evolution reaction. Electrochim Acta 353:136519–136530

    Article  CAS  Google Scholar 

  30. Mishra S, Maurya PK, Mishra AK (2020) 2H–MoS2 nanoflowers based high energy density solid state supercapacitor. Mater Chem Phys 255:123551–123558

    Article  CAS  Google Scholar 

  31. Wei S, Wan C, Zhang L, Liu X, Tian W, Su J, Cheng W, Wu Y (2022) N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chem Eng J 429:132242–132253

    Article  CAS  Google Scholar 

  32. Wan L, Yuan Y, Liu J, Chen J, Zhang Y, Du C, Xie M (2021) A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors. Electrochim Acta 368:137576–137587

    Article  Google Scholar 

  33. Zhang Z, Du W, Ren X, Shen Z, Fan X, Wei S, Wei C, Cao Z, Zhang B (2019) Ni(OH)2-Co2(OH)3Cl bilayer nanocomposites supported by Ni foams for binder-free electrodes of high-performance hybrid supercapacitors. Appl Surf Sci 469:624–633

    Article  CAS  Google Scholar 

  34. Du L-J, Zhang R, Zhou J-H, Li J-S, Huang X-Q, Luo J-J (2022) Microwave-synthesized self-supporting CoSe2/carbon fiber felt electrode for ultraehigh cycling life flexible supercapacitors. Int J Hydrogen Energy 47(26):12855–12864

    Article  CAS  Google Scholar 

  35. Zheng Y, Tian Y, Sarwar S, Luo J, Zhang X (2020) Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J Power Sources 452:227793–227801

    Article  CAS  Google Scholar 

  36. Gu Y, Du W, Darrat Y, Saleh M, Huang Y, Zhang Z, Wei S (2019) In situ growth of novel nickel diselenide nanoarrays with high specific capacity as the electrode material of flexible hybrid supercapacitors. Appl Nanosci 10(5):1591–1601

    Article  Google Scholar 

  37. Gu Y, Fan L-Q, Huang J-L, Geng C-L, Lin J-M, Huang M-L, Huang Y-F, Wu J-H (2019) N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J Power Sources 425:60–68

    Article  CAS  Google Scholar 

  38. Hao T, Liu Y, Liu G, Peng C, Chen B, Feng Y, Ru J, Yang J (2019) Insight into faradaic mechanism of polyaniline@NiSe2 core-shell nanotubes in high-performance supercapacitors. Energy Storage Materials 23:225–232

    Article  Google Scholar 

  39. Ahirrao DJ, Wilson HM, Jha N (2019) TiO2-nanoflowers as flexible electrode for high performance supercapacitor. Appl Surf Sci 491:765–778

    Article  CAS  Google Scholar 

  40. Chen S, Li Y, Wu B, Wu Z, Li F, Wu J, Liu P, Li H (2018) 3D meso/macroporous Ni3S2@Ni composite electrode for high-performance supercapacitor. Electrochim Acta 275:40–49

    Article  CAS  Google Scholar 

  41. Pathak M, Tamang D, Kandasamy M, Chakraborty B, Rout CS (2020) A comparative experimental and theoretical investigation on energy storage performance of CoSe2, NiSe2 and MnSe2 nanostructures. Appl Mater Today 19:100568–100577

    Article  Google Scholar 

  42. Vidhya MS, Yuvakkumar R, Ravi G, Saravanakumar B, Velauthapillai D (2021) Asymmetric polyhedron structured NiSe2@MoSe2 device for use as a supercapacitor. Nanoscale Advances 3(14):4207–4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mei H, Zhang L, Zhang K, Gao J, Zhang H, Huang Z, Xu B, Sun D (2020) Conversion of MOF into carbon-coated NiSe2 yolk-shell microspheres as advanced battery-type electrodes. Electrochim Acta 357:136866–136874

    Article  CAS  Google Scholar 

  44. Bao Q, Wu J, Fan L, Ge J, Dong J, Jia J, Zeng J, Lin J (2017) Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J Energy Chem 26(6):1252–1259

    Article  Google Scholar 

  45. Chen S, Lu C, Liu L, Xu M, Wang J, Deng Q, Zeng Z, Deng S (2020) A hierarchical glucose-intercalated NiMn-G-LDH@NiCo2S4 core-shell structure as a binder-free electrode for flexible all-solid-state asymmetric supercapacitors. Nanoscale 12(3):1852–1863

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

    Article  CAS  Google Scholar 

  47. Sree Raj KA, Shajahan AS, Chakraborty B, Rout CS (2020) Two-dimensional layered metallic VSe2/SWCNTs/rGO based ternary hybrid materials for high performance energy storage applications. Chem Eur J 26(29):6662–6669

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Feng H, Yang J, Qin Q, Fan H, Wei C, Zheng W (2015) Solvothermal synthesis of three-dimensional hierarchical CuS microspheres from a Cu-based ionic liquid precursor for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7(39):21735–21744

    Article  CAS  PubMed  Google Scholar 

  49. Zhao L, Zhang P, Zhang Y, Zhang Z, Yang L, Chen Z-G (2020) Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors. J Mater Sci Technol 54:69–76

    Article  Google Scholar 

  50. Li Z, Tian M, Chen Y, Liu Y, Cai Y, Wei W (2021) MOFs derived (Ni0.75Co0.25)Se2 nanoparticles embedded in N-doped nanocarbon for hybrid supercapacitors. Ceram Int 47(9):12623–12630

    Article  CAS  Google Scholar 

  51. An W, Liu L, Gao Y, Liu Y, Liu J (2016) Ni0.9Co1.92Se4 nanostructures: binder-free electrode of coral-like bimetallic selenide for supercapacitors. RSC Adv 6(79):75251–75257

    Article  CAS  Google Scholar 

  52. Chen T, Li S, Gui P, Wen J, Fu X, Fang G (2018) Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution. Nanotechnology 29(20):205401

    Article  PubMed  Google Scholar 

  53. Pawar SM, Pawar BS, Hou B, Kim J, Aqueel Ahmed AT, Chavan HS, Jo Y, Cho S, Inamdar AI, Gunjakar JL, Kim H, Cha S, Im H (2017) Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. J Mater Chem A 5(25):12747–12751

    Article  CAS  Google Scholar 

  54. Yang Y, Lin Z, Gao S (2017) Tuning electronic structures of nonprecious ternary alloys encapsulated in graphene layers for optimizing overall water splitting activity. ACS Catal 7(1):469–479

    Article  CAS  Google Scholar 

  55. Zhang WD, Yan X, Li T, Liu Y, Fu QT, Gu ZG (2019) Metal-organic layer derived metal hydroxide nanosheets for highly efficient oxygen evolution. Chem Commun (Camb) 55(38):5467–5470

    Article  CAS  Google Scholar 

  56. Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou SX (2018) Hybrid 2D dual‐metal–organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28(26)

Download references

Funding

This study is supported by the Key Research Program of Lvliang City (No. 2021GXYF-1–21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liexiang Ren or Tongtong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ren, L., Luo, J. et al. Microwave synthesis of NiSe2 nanomaterials on carbon fiber felt for flexible supercapacitors and oxygen evolution reaction. J Solid State Electrochem 26, 2861–2871 (2022). https://doi.org/10.1007/s10008-022-05290-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05290-z

Keywords

Navigation