Skip to main content
Log in

Poly(3-octylthiophene) as solid contact for ion-selective electrodes: contradictions and possibilities

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The hydrophobic conductive polymer, poly(3-octylthiophene) (POT), is considered as uniquely suited to be used as an ion-to-electron transducer in solid contact (SC) ion-selective electrodes (ISEs). However, the reports on the performance characteristics of POT-based SC ISEs are quite conflicting. In this study, the potential sources of the contradicting results on the ambiguous drift and poor potential reproducibility of POT-based ISEs are compiled, and different approaches to minimize the drift and the differences in the standard potentials of POT-based SC ISEs are shown. To set the potential of the POT film, it has been loaded with a 7,7,8,8-tetracyanoquinodimethane (TCNQ/TCNQ·−) redox couple. An approximately 1:1 TCNQ/TCNQ·−ratio in the POT film has been achieved through potentiostatic control of the potential of the redox couple-loaded conductive polymer. It is hypothesized that once the POT film has a stable, highly reproducible redox potential, it will provide similarly stable and reproducible interfacial potentials between the POT film and the electron-conducting substrate and result in SC ISEs with excellent reproducibility and potential stability. Towards this goal, the potentials of Au, GC, and Pt electrodes with drop-cast POT film coatings were recorded in KCl solutions as a function of time. Some of the POT films were loaded with TCNQ and coated with a K+-selective membrane. The improvement in the potential stabilities and sensor-to-sensor reproducibility as a consequence of the incorporation of TCNQ in the POT film and the potentiostatic control of the TCNQ/TCNQ·−ratio is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bakker E (2016) Electroanalysis with membrane electrodes and liquid-liquid interfaces. Anal Chem 88:395–413

    Article  Google Scholar 

  2. Cattrall RW, Freiser H (1971) Coated wire ion selective electrodes. Anal Chem 43(13):1905–1906

    Article  CAS  Google Scholar 

  3. Lindner E, Buck R (2000) Microfabricated potentiometric electrodes and their in vivo applications. Anal Chem 72(9):336A–345A

    Article  CAS  Google Scholar 

  4. Bobacka J (2006) Conducting polymer-based solid-state ion-selective electrodes. Electroanalysis 18(1):7–18

    Article  CAS  Google Scholar 

  5. Lindner E, Gyurcsanyi R (2009) Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. J Solid State Electrochem 13(1):51–68

    Article  CAS  Google Scholar 

  6. Michalska A (2012) All-solid-state ion selective and all-solid-state reference electrodes. Electroanalysis 24(6):1253–1265

    Article  CAS  Google Scholar 

  7. Enger O, Nuesch F, Fibbioli M, Echegoyen L, Pretsch E, Diederich F (2000) Photocurrent generation at a fullerene self-assembled monolayer-modified gold electrode cast with a polyurethane membrane. J Mater Chem 10(10):2231–2233

    Article  CAS  Google Scholar 

  8. Paczosa-Bator B, Pięk M, Piech R (2014) Application of nanostructured TCNQ to potentiometric ion-selective K+ and Na+ Electrodes. Anal Chem 87:1718–1725

    Article  Google Scholar 

  9. Hu J, Zough X, Stein A, Buhlmann P (2014) Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact. Anal Chem 86:7111–7118

    Article  CAS  Google Scholar 

  10. Chumbimuni-Torres K, Rubinova N, Radu A, Kubota L, Bakker E (2006) Solid contact potentiometric sensors for trace level measurements. Anal Chem 78:1318–1322

    Article  CAS  Google Scholar 

  11. Lindfors T, Sundfors F, Hofler L, Gyurcsanyi R (2011) The water uptake of plasticized poly(vinyl chloride) solid-contact calcium-selective electrodes. Electroanalysis 23:2156–2163

    Article  CAS  Google Scholar 

  12. Lindfors T, Hofler L, Jagerszki G, Gyurcsanyi R (2011) Hyphenated FT-IR attenuated total reflection and electrochemical impedence spectroscopy. Anal Chem 83:4902–4908

    Article  CAS  Google Scholar 

  13. Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range. Anal Chim Acta 523:53–59

    Article  CAS  Google Scholar 

  14. Yuan D, Anthis A, Afshar M, Pankratova N, Cuartero M, Crespo G, Bakker E (2015) All-solid-state potentiometric sensors with a multi-walled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal Chem 87(17):8640–8645

    Article  CAS  Google Scholar 

  15. He N, Gyurcsányi R, Lindfors T (2016) Electropolymerized hydrophobic polyazulene as solid-contacts in potassium-selective electrodes. Analyst 141(10):2990–2997

    Article  CAS  Google Scholar 

  16. Khripoun G, Volkova E, Liseenkov A, Mikhelson K (2006) Nitrate-selective solid-contact electrodes with poly(3-octylthiophene) and poly(aniline) as ion-to-electron transducers buffered with electron-ion-exchanging resin. Electroanalysis 18(13–14):1322–1328

    Article  CAS  Google Scholar 

  17. Michalska A, Wojciechowski M, Bulska E, Maksymiuk K (2010) Experimental study on stability of different solid contact arrangements of ion-selective electrodes. Talanta 82(1):151–157

    Article  CAS  Google Scholar 

  18. Sjoberg-Eerola P, Nylund J, Bobacka J, Ivaska A (2008) Soluble semiconducting poly(3-octylthiophene) as a solid-contact material in all-solid-state chloride sensors. Sens Actuat B-Chem 134(2):878–886

    Article  Google Scholar 

  19. Guzinski M, Jarvis J, Pendley B, Lindner E (2015) Equilibration time of solid-contact ion-selective electrodes. Anal Chem 87(13):6654–6659

    Article  CAS  Google Scholar 

  20. Veder JP, De Marco R, Clarke G, Jiang SP, Prince K, Pretsch E, Bakker E (2011) Water uptake in the hydrophilic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) solid-contact of all-solid-state polymeric ion-selective electrodes. Analyst 136(16):3252–3258

    Article  CAS  Google Scholar 

  21. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Potential drifts of solid-contacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane. Electroanalysis 12(16):1286–1292

    Article  CAS  Google Scholar 

  22. Lindfors T, Hofler L, Jagerszki G, Gyurcsanyi RE (2011) Hyphenated FT-IR attenuated total reflection and electrochemical impedance spectroscopy. Anal Chem 83:4902–4908

    Article  CAS  Google Scholar 

  23. Veder J, De Marco R, Clarke G, Chester R, Nelson A, Prince K, Pretsch E, Bakker E (2008) Elimination of undesirable water layers in solid-contact polymeric ISEs. Anal Chem 80:6731–6740

    Article  CAS  Google Scholar 

  24. Veder J, Patel K, Clarke G, Grygolowicz-Pawlak E, Silvester D, De Marco R, Pretsch E, Bakker E (2010) Synchrotron radiation/FTIR microspectroscopy study of undesirable water inclusions in solid-contact polymeric ion-selective electrodes. Anal Chem 82:6203–6207

    Article  CAS  Google Scholar 

  25. Sutter J, Pretsch E (2005) Response behavior of poly(vinyl chloride)- and polyurethane-based Ca2+-selective membrane electrodes with polypyrrole- and poly(3-octylthiophene)-mediated internal solid contact. Electroanalysis 18(1):19–25

    Article  Google Scholar 

  26. De Marco R, Jee E, Prince K, Pretsch E, Bakker E (2009) Synthesis and characterization of high-integrity solid contact polymeric ion sensors. J Solid State Electrochem 13:137–148

    Article  CAS  Google Scholar 

  27. Bobacka J, Grzeszczuk M, Ivaska A (1991) Electrochemical study of poly(3-octylthiophene) film electrodes, I. Electrolyte effects on the voltammetric characteristics of the polymer. Three states of the polymer film. Synth Met 44:9–19

    Article  CAS  Google Scholar 

  28. Chen T, Wu X, Rieke R (1994) Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: their characterization and solid-state properties. J Am Chem Soc 117:233–244

    Article  Google Scholar 

  29. Lindfors T (2009) Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. J Solid State Electrochem 13:77–89

    Article  CAS  Google Scholar 

  30. Ates M, Karazehir T, Arican F, Eren N (2013) Comparison of electrolyte effects for poly(3,4-ethylenedioxythiophene) and poly(3-octylthiophene) by electrochemical impedance spectroscopy and polymerization parameters with morphological analyses on coated films. J Coat Technol Res 10(3):317–330

    Article  CAS  Google Scholar 

  31. Bobacka J, McCarrick M, Lewenstam A, Ivaska A (1994) All-solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact. Analyst 119(9):1985–1991

    Article  CAS  Google Scholar 

  32. Paciorek R, van der Wal P, de Rooij N, Maj-Zurawska M (2003) Optimization of the composition of interfaces in miniature planar chloride electrodes. Electroanalysis 15:1314–1318

    Article  CAS  Google Scholar 

  33. Bobacka J, Ivaska A, Lewenstam A (1999) Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Anal Chim Acta 385:195–202

    Article  CAS  Google Scholar 

  34. Vasquez M, Bobacka J, Ivaska A (2005) Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). J Solid State Electrochem 9:865–873

    Article  Google Scholar 

  35. Mousavi Z, Teter A, Lewenstam A, Maj-Zurawska M, Ivaska A, Bobacka J (2011) Comparison of multi-walled carbon nanotubes and poly(3-octylthiophene) as ion-to-electron transducers in all-solid-state potassium ion-selective electrodes. Electroanalysis 23:1352–1358

    Article  CAS  Google Scholar 

  36. Sutter J, Lindner E, Gyurcsányi R, Pretsch E (2004) A polypyrrole-based solid-contact Pb2+−selective PVC-membrane electrode with a nanomolar detection limit. Anal Bioanal Chem 380:7–14

    Article  CAS  Google Scholar 

  37. Gyurcsányi R, Rangisetty N, Clifton S, Pendley B, Lindner E (2004) Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta 63:89–99

    Article  Google Scholar 

  38. Zou X, Cheong J, Taitt B, Bühlmann P (2013) Solid contact ion-selective electrodes with a well-controlled Co(II)/Co(III) redox buffer layer. Anal Chem 85:9350–9355

    Article  CAS  Google Scholar 

  39. Zou X, Zhen X, Cheong J, Bühlmann P (2014) Calibration-free ionophore-based ion-selective electrodes with a Co(II)/Co(III) redox couple-based solid contact. Anal Chem 86(17):8687–8692

    Article  CAS  Google Scholar 

  40. Vanamo U, Bobacka J (2014) Instrument-free control of the standard potential of potentiometric solid-contact ion-selective electrodes by short-circuiting with a conventional reference electrode. Anal Chem 86:10540–10545

    Article  CAS  Google Scholar 

  41. Le TH, Nafady A, Qu XH, Bond AM, Martin LL (2012) Redox and Acid–base Chemistry of 7,7,8,8-Tetracyanoquinodimethane, 7,7,8,8-Tetracyanoquinodimethane Radical Anion, 7,7,8,8-Tetracyanoquinodimethane Dianion, and Dihydro-7,7,8,8-Tetracyanoquinodimethane in Acetonitrile. Anal Chem 84(5):2343–2350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Instrumentation Laboratories (IL) (Bedford, MA) and the Fedex Institute of Technology through the Sensor Institute of the University of Memphis (SENSORIUM) is gratefully acknowledged. J.J. acknowledges the support of IL to her graduate research assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernő Lindner.

Additional information

In honor of my friend Professor György Inzelt on his 70th birthday in recognition of his significant contribution to electrochemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarvis, J.M., Guzinski, M., Pendley, B.D. et al. Poly(3-octylthiophene) as solid contact for ion-selective electrodes: contradictions and possibilities. J Solid State Electrochem 20, 3033–3041 (2016). https://doi.org/10.1007/s10008-016-3340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3340-2

Keywords

Navigation