Skip to main content
Log in

Comparison of electrolyte effects for poly(3,4-ethylenedioxythiophene) and poly(3-octylthiophene) by electrochemical impedance spectroscopy and polymerization parameters with morphological analyses on coated films

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

3,4-Ethylenedioxythiophene and 3-octylthiophene were electropolymerized on glassy carbon electrodes (GCE) to compare with four different electrolytes [lithium perchlorate (LiClO4), sodium perchlorate, tetraethylammonium tetrafluoroborate, and tetrabutylammonium tetrafluoroborate] in a solvent of acetonitrile (CH3CN). Modified electrodes were characterized by cyclic voltammetry, attenuated total reflectance–Fourier transform IR spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, atomic force microscopy, and electrochemical impedance spectroscopy (EIS). Nyquist and Bode plots for magnitude, phase, admittance, and capacitance on both polymer-modified electrodes were comparatively investigated in detail. The highest low-frequency capacitance (C LF) and double-layer capacitance (C dl) were obtained in 0.1 M LiClO4/CH3CN for poly(3,4-ethylenedioxythiophene) and poly(octylthiophene)/GCE. EIS data were fitted to the equivalent circuit model of R(Q(R(C(R(C(RW))))))(CR), which is used to investigate circuit parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Virji, S, Fowler, JD, Baker, CO, Huang, J, Kaner, RB, Weiller, BH, “Polyaniline Nanofiber Composites with Metal Salts: Chemical Sensors for Hydrogen Sulfide.” Small, 1 (6) 624–627 (2005)

    Article  CAS  Google Scholar 

  2. Skotheim, T, Elsenbauer, RL, Reynolds, JR (eds.), Handbook of Conducting Polymers, 2nd ed. Marcel Dekker, Livingston, NJ (1997)

    Google Scholar 

  3. Inzelt, G, Pineri, M, Schultze, JW, Vorotyntsev, MA, “Electron and Proton Conducting Polymers: Recent Developments and Prospects.” Electrochim. Acta, 45 (15–16) 2403–2421 (2000)

    Article  CAS  Google Scholar 

  4. Schweiss, R, Lubben, JF, Johannsmann, D, Knoll, W, “Electropolymerization of Ethylene Dioxythiophene (EDOT) in Micellar Aqueous Solutions Studied by Electrochemical Quartz Crystal Microbalance and Surface Plasmon Resonance.” Electrochim. Acta, 50 (14) 2849–2856 (2005)

    Article  CAS  Google Scholar 

  5. Shirakawa, H, Louis, EJ, MacDiarmid, AG, Chiang, CK, Heeger, AJ, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH) x .” J. Chem. Soc. Chem. Commun., 16 578–580 (1977)

    Article  Google Scholar 

  6. Collazos-Castro, JE, Polo, JL, Hernández-Labrado, GR, Padial-Cañete, V, García-Rama, C, “Bioelectrochemical Control of Neural Cell Development on Conducting Polymers.” Biomaterials, 31 (35) 9244–9255 (2010)

    Article  CAS  Google Scholar 

  7. Heeger, AJ, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials.” J. Phys. Chem. B., 105 (36) 8475–8491 (2001)

    Article  CAS  Google Scholar 

  8. McCullough, RD, Ewbank, PC, Skotheim, TA, Handbook of Conducting Polymers. Marcel Dekker, New York (1998)

    Google Scholar 

  9. Koizhaiganova, RB, Kim, HJ, Vasudevan, T, Lee, MS, “Electrical and Optical Properties of Conducting Poly(3-hexylthiophene)/Multi-Walled Carbon Nanotube System.” Int. J. Polym. Mater., 58 (2) 120–128 (2009)

    Article  CAS  Google Scholar 

  10. Akoudad, S, Roncali, J, “Electrogenerated Poly(thiophenes) with Extremely Low Bandgap.” Synth. Met., 101 (1–3) 149–149 (1999)

    Article  CAS  Google Scholar 

  11. Street, GB, Clarke, TC, “Conducting Polymers: A Review of Recent Work.” IBM J. Res. Dev., 25 (1) 51–57 (1981)

    Article  CAS  Google Scholar 

  12. Roncali, J, “Synthetic Principles for Band Gap Control in Linear Π-Conjugated Systems.” Chem. Rev., 97 (1) 173–205 (1997)

    Article  CAS  Google Scholar 

  13. McCullough, RD, “The Chemistry of Conducting Polythiophenes.” Adv. Mater., 10 (2) 93–116 (1998)

    Article  CAS  Google Scholar 

  14. Kutsche, C, Targove, J, Haaland, PJ, “Microlithographic Patterning of Polythiophene Films.” Appl. Phys., 73 (5) 2602–2604 (1993)

    Article  CAS  Google Scholar 

  15. Genies, EM, Boyle, A, Lapkowski, M, Tsintavis, C, “Polyaniline: A Historical Survey.” Synth. Met., 36 (2) 139–182 (1990)

    Article  CAS  Google Scholar 

  16. Buzarovska, A, Arsov, L, “Comparative Study of the Electrochemical Response of Poly (Alkyl Thiophene) Derivatives Deposited on Platinum and Titanium Electrodes.” Polym. Bull., 50 (3) 161–168 (2003)

    Article  CAS  Google Scholar 

  17. Shin, WS, Kim, SC, Lee, SJ, Jeon, HS, Kim, MK, Naidu, BVK, Jin, SH, Lee, JK, Lee, JW, Gal, YS, “Synthesis and Photovoltaic Properties of aLow-Band-Gap Polymer Consisting of Alternating Thiophene and Benzothiadiazole Derivatives for Bulk-Heterojunction and Dye-Sensitized Solar Cells.” J. Polym. Sci. A: Polym. Chem., 45 (8) 1394–1402 (2007)

    Article  CAS  Google Scholar 

  18. Qi, Z, Rees, NG, Pickup, PG, “Electrochemically Induced Substitution of Polythiophenes and Polypyrrole.” Chem. Mater., 8 (3) 701–707 (1996)

    Article  CAS  Google Scholar 

  19. Muramatsu, Y, Yamamoto, T, Hasegawa, M, Yasi, T, Koinuma, H, “Piezochromic Behaviour of Regioregular Poly(3-hexylthiophene-2,5-diyl) and Poly(5,8-dihexadecyloxyanthraquinone-1,4-diyl).” Polymer, 42 (15) 6673–6675 (2001)

    Article  CAS  Google Scholar 

  20. Nicho, ME, Garcia-Carvajal, S, Marquez-Aguilar, PA, Guizado-Rodriguez, M, Escalante-Garcia, J, Medrano-Baca, G, “Synthesis and Physicochemical Characterization of Copolymers of 3-Octylthiophene and Thiophene Functionalized with Azo Chromophore.” Mater. Chem. Phys., 129 (3) 1027–1034 (2011)

    Article  CAS  Google Scholar 

  21. Bobacka, J, Ivaska, A, “Electrochemical Study of Poly(3-octylthiophene) Film Electrodes. 2. Reversible Redox/Conductivity State Switching: Impedance Study.” Synth. Met., 44 (1) 21–34 (1991)

    Article  CAS  Google Scholar 

  22. Kumar, J, Singh, RK, Chand, S, Kumar, V, Rastogi, RC, Singh, R, “DC Electrical Conduction and Morphology of Poly(3-octylthiophene) Films.” J. Phys. D: Appl. Phys., 39 (1) 196–202 (2006)

    Article  CAS  Google Scholar 

  23. Maynor, BW, Filocamo, SF, Grinstaff, MW, Liu, J, “Direct-Writing of Polymer Nanostructures: Poly(thiophene) Nanowires on Semiconducting and Insulating Surfaces.” J. Am. Chem. Soc., 124 (4) 522–523 (2002)

    Article  CAS  Google Scholar 

  24. Grzeszczuk, M, Bobacka, J, Ivaska, A, “Ion Transfer at a Poly(3-octylthiophene) Film Electrode.” J. Electroanal. Chem., 362 (1–2) 287–289 (1993)

    CAS  Google Scholar 

  25. Bobacka, J, Grzeszczuk, M, Ivaska, A, “Electron Transfer at Conducting Polymer Film Electrodes: Mechanism and Kinetics of Ferrocene Oxidation at Poly(3-octylthiophene).” J. Electroanal. Chem., 427 (1–2) 63–69 (1997)

    CAS  Google Scholar 

  26. Schopf, G, Koßmehl, G, Polythiophenes—Electrically Conductive Polymers. Springer, Berlin (1995)

    Google Scholar 

  27. Tolstopyatova, EG, Sazonova, SN, Kondrat’ev, VV, Malev, VV, “Electrochemical Impedance Spectra of Poly(3-octylthiophene) Films.” Russ. J. Electrochem., 40 (9) 930–936 (2004)

    Article  CAS  Google Scholar 

  28. Jonas, F, Schrader, L, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes.” Synth. Met., 41 (3) 831–836 (1991)

    Article  CAS  Google Scholar 

  29. Sonmez, G, Meng, H, Wudl, F, “Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency.” Chem. Mater., 16 (4) 574–580 (2004)

    Article  CAS  Google Scholar 

  30. Meskers, SCJ, Duren, JKJ, Janssen, RAJ, Louwet, F, Groenendaal, L, “Infrared Detectors with Poly(3,4-ethylenedioxy Thiophene)/Poly(styrene Sulfonic Acid) (PEDOT/PSS) as the Active Material.” Adv. Mater., 15 (7–8) 613–616 (2003)

    Article  CAS  Google Scholar 

  31. Fehse, K, Walzer, K, Leo, K, Lövenich, W, Elschne, A, “Highly Conductive Polymer Anodes as Replacements for Inorganic Materials in High-Efficiency Organic Light-Emitting Diodes.” Adv. Mater., 19 (3) 441–444 (2007)

    Article  CAS  Google Scholar 

  32. Xu, Q, Li, Y, Feng, W, Yuan, X, “Fabrication and Electrochemical Properties of Polyvinyl Alcohol/Poly(3,4-Ethylenedioxythiophene) Ultrafine Fibers via Electrospinning of EDOT Monomers with Subsequent In Situ Polymerization.” Synth. Met., 160 (1–2) 88–93 (2010)

    Article  CAS  Google Scholar 

  33. Argun, AA, Cirpan, A, Reynolds, JR, “The First Truly All-Polymer Electrochromic Devices.” Adv. Mater., 15 (16) 1338–1341 (2003)

    Article  CAS  Google Scholar 

  34. Poverenov, E, Li, M, Bitler, A, Bendikov, M, “Major Effect of Electropolymerization Solvent on Morphology and Electrochromic Properties of PEDOT Films.” Chem. Mater., 22 (13) 4019–4025 (2010)

    Article  CAS  Google Scholar 

  35. Wu, S, Han, S, Zheng, Y, Zheng, H, Liu, N, Wang, L, Cao, Y, Wang, J, “pH-Neutral PEDOT:PSS as Hole Injection Layer in Polymer Light Emitting Diodes.” Org. Electron., 12 (3) 504–508 (2011)

    Article  CAS  Google Scholar 

  36. Lin, KC, Tsai, TH, Chen, SM, “Performing Enzyme-Free H(2)O(2) Biosensor and Simultaneous Determination for AA, DA, and UA by MWCNT-PEDOT Film.” Biosens. Bioelectron., 26 (2) 608–614 (2010)

    Article  CAS  Google Scholar 

  37. Chen, JH, Dai, CA, Chiu, WY, “Synthesis of Highly Conductive EDOT Copolymer Films via Oxidative Chemical In Situ Polymerization.” J. Polym. Sci. A: Polym. Chem., 46 (5) 1662–1673 (2008)

    Article  CAS  Google Scholar 

  38. Beaujuge, PM, Ellinger, S, Reynolds, JR, “The Donor-Acceptor Approach Allows a Black-To-Transmissive Switching Polymeric Electrochrome.” Nat. Mater., 7 (10) 795–799 (2008)

    Article  CAS  Google Scholar 

  39. Chang, CH, Wang, KL, Jiang, JC, Liawa, DJ, Lee, KR, Lai, JY, Lai, KH, “Novel Rapid Switching and Bleaching Electrochromic Polyimides Containing Triarylamine with 2-Phenyl-2-Isopropyl Groups.” Polymer, 51 (20) 4493–4502 (2010)

    Article  CAS  Google Scholar 

  40. Goto, H, “Electrochemical Polymerization in Crystal-Preparation of Polybithiophene with Crystal Order.” J. Polym. Sci. A: Polym. Chem., 50 (4) 622–628 (2012)

    Article  CAS  Google Scholar 

  41. Sasikumar, R, Manisankar, P, “Newer Dynamic Electrochromic Nanorods of Poly(O-anisidine-Co-Ethyl 4-Aminobenzoate) Synthesized by Electrochemical Polymerization.” Electrochim. Acta, 59 558–566 (2012)

    Article  CAS  Google Scholar 

  42. Galal, A, Wang, Z, Karagozler, AE, Zimmer, H, Mark, HB, Bishop, PL, “A Potentiometric Iodide (and Other) Ion Sensor Based on a Conductıng Polymer Film Electrode. 2. Effect of Electrode Conditioning and Regeneration Techniques.” Anal. Chim. Acta, 299 (2) 145–163 (1994)

    Article  CAS  Google Scholar 

  43. Ciftci, H, Tamer, U, “Functional Gold Nanorod Particles on Conducting Polymer Poly(3-octylthiophene) as Non-Enzymatic Glucose Sensor.” React. Funct. Polym., 72 (2) 127–132 (2012)

    Article  CAS  Google Scholar 

  44. Tian, L, Feng, Y, Qi, Y, Wang, B, Fu, X, Chen, Y, “Investigations of Electrochemical Polymerization Processes of Thin Poly(pyrrole) Films and Their Application to Anion Sensor Based on Surface Plasmon Resonance.” J. Polym. Res., 18 (6) 2379–2387 (2011)

    Article  CAS  Google Scholar 

  45. Tolstopyatova, EG, Sazonova, SN, Malev, VV, Kondratiev, VV, “Electrochemical Impedance Spectroscopy of Poly (3-Methylthiophene) and Poly(3-octylthiophene) Film Electrodes.” Electrochim. Acta, 50 (7–8) 1565–1571 (2005)

    Article  CAS  Google Scholar 

  46. Barsoukov, E, Macdonald, JR, Impedance Spectroscopy: Theory, Experiment and Applications. Wiley Interscience, Hoboken, NJ (2005)

    Book  Google Scholar 

  47. Ates, M, “Review Study of Electrochemical Impedance Spectroscopy and Equivalent Electrical Circuits of Conducting Polymers on Carbon Surfaces.” Prog. Org. Coat., 71 (1) 1–10 (2011)

    Article  CAS  Google Scholar 

  48. Malev, VV, Kondratiev, VV, “Charge Transfer Processes in Conductive Polymer Films.” Russ. Chem. Rev., 75 (2) 147–160 (2006)

    Article  CAS  Google Scholar 

  49. Hernandez-Labrado, GR, Contreras-Donayre, RE, Collazos-Castro, JE, Polo, JL, “Subdiffusion Behavior in Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate (PEDOT:PSS) Evidenced by Electrochemical Impedance Spectroscopy.” J. Electroanal. Chem., 659 (2) 201–204 (2011)

    Article  CAS  Google Scholar 

  50. Vorotyntsev, M, Vieil, E, Heinze, J, “Charging Process in Polypyrrole Films: Effect of Ion Association.” J. Electroanal. Chem., 450 (1) 121–141 (1998)

    Article  CAS  Google Scholar 

  51. Rudge, A, Davey, J, Raistrick, I, Gottesfeld, S, Ferraris, JP, “Conducting Polymers as Active Materials in Electrochemical Capacitors.” J. Power Sources, 47 (1–2) 89–107 (1994)

    Article  CAS  Google Scholar 

  52. Kvarnström, C, Neugebauer, H, Blomquist, S, Ahonen, HJ, Kankare, J, Ivaska, A, “In Situ Spectroelectrochemical Characterization of Poly(3,4-ethylenedioxythiophene).” Electrochim. Acta, 44 2739–2750 (1999)

    Article  Google Scholar 

  53. Dietrich, M, Heinze, J, Heywang, G, Jonas, F, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxythiophenes.” J. Electroanal. Chem., 369 (1–2) 87–92 (1994)

    CAS  Google Scholar 

  54. Noel, V, Randriamahazaka, H, Chevrot, C, “Electrochemical Impedance Spectroscopy of an Oxidized Poly(3,4-ethylenedioxythiophene) in Propylene Carbonate Solutions.” J. Electroanal. Chem., 558 41–48 (2003)

    Article  CAS  Google Scholar 

  55. Randriamahazaka, H, Noel, V, Chevrot, C, “Nucleation and Growth of Poly(3,4-ethylenedioxythiophene) in Acetonitrile on Platinum Under Potentiostatic Conditions.” J. Electroanal. Chem., 472 (2) 103–111 (1999)

    Article  Google Scholar 

  56. Xing, KZ, Fahlman, M, Chen, XW, Inganas, O, Salaneck, WR, “The Electronic Structure of Poly(3,4-ethylene-dioxythiophene): Studied by XPS and UPS.” Synth. Met., 89 (3) 161–165 (1997)

    Article  CAS  Google Scholar 

  57. Vinocur, MJ, Skotheim, TA, Elsenbaumer, RL, “Structural Studies of Conducting Polymers.” In: Reynolds, JR (ed.) Handbook of Conducting Polymers, 2nd ed., pp. 706–712. Marcel Dekker, New York (1998)

  58. Bobacka, J, Ivaska, A, Grzeszczuk, M, “Electrochemical Study of Poly(3-octylthiophene) Film Electrodes 1. Electrolyte Effects on the Voltammetric Characteristics of the Polymer 3 States of the Polymer Film.” Synth. Met, 44 (1) 9–19 (1991)

    Article  CAS  Google Scholar 

  59. Groenandaal, L, Zotti, G, Aubert, PH, Waybrigth, SM, Reynolds, JR, “Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives.” Adv. Mater., 15 (11) 855–879 (2003)

    Article  Google Scholar 

  60. Rusling, JF, Suib, SL, “Characterizing Materials with Cyclic Voltammetry.” Adv. Mater., 6 (12) 922–930 (1994)

    Article  CAS  Google Scholar 

  61. Hernandez, V, Ramirez, FJ, Otero, TF, Lopez Navarrete, JT, “An Interpretation of the Vibrational-Spectra of Insulating and Electrically Conducting Poly(3-methylthiophene) Aided by a Theoretical Dynamical Model.” J. Chem. Phys., 100 (1) 114–129 (1994)

    Article  CAS  Google Scholar 

  62. Moradi, A, Emamgolizadeh, A, Omrani, A, Rostami, AA, “Electropolymerization and Characterization of 3,4-Ethylenedioxy Thiophene on Glassy Carbon Electrode and Study of Ions Transport of the Polymer During Redox Process.” J. Appl. Polym. Sci., 125 (3) 2407–2416 (2012)

    Article  CAS  Google Scholar 

  63. Sarac, AS, Ates, M, Parlak, EA, “Electrolyte and Solvent Effects of Electrocoated Polycarbazole Thin Films on Carbon Fiber Microelectrodes.” J. Appl. Electrochem., 36 889–898 (2006)

    Article  CAS  Google Scholar 

  64. Sarac, AS, Parlak, E, Sezer, E, “Sythesis and Electrochemical Polymerization of N-Ethylcarbazole-bis-3,4-ethylenedioxythiophene-N-ethylcarbazole Comonomer.” J. Appl. Polym. Sci., 103 795–801 (2007)

    Article  CAS  Google Scholar 

  65. Sarac, AS, Sezgin, S, Ates, M, Turhan, CM, “Monomer Concentration Effect on Electrochemically Modified Carbon Fiber with Poly[1-(4-methoxyphenyl)-1H-pyrrole] as Microcapacitor Electrode.” Adv. Polym. Technol., 28 (2) 120–130 (2009)

    Article  CAS  Google Scholar 

  66. Eliseeva, SN, Spiridonova, DV, Tolstopyatova, EG, Kondratiev, VV, “Redox Capacitance of Poly-3,4-ethylenedioxythiophene Studied by Cyclic Voltammetry and Faradaic Impedance Spectroscopy.” Russ. J. Electrochem., 44 (8) 894–900 (2008)

    Article  CAS  Google Scholar 

  67. Miller, JR, Outlaw, RA, Holloway, BC, “Graphene Electric Double Layer Capacitor with Ultra-High Power Performance.” Electrochim. Acta, 56 10443–10449 (2011)

    Article  CAS  Google Scholar 

  68. Ates, M, Sarac, AS, “Capacitive Behavior of Polycarbazole- and Poly(N-vinylcarbazole)-Coated Carbon Fiber Microelectrodes in Various Solutions.” J. Appl. Electrochem., 39 (10) 2043–2048 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work by the Research Foundation of Namik Kemal University (Turkey) project number: NKU.BAP.00.10.AR.11.01 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ates, M., Karazehir, T., Arican, F. et al. Comparison of electrolyte effects for poly(3,4-ethylenedioxythiophene) and poly(3-octylthiophene) by electrochemical impedance spectroscopy and polymerization parameters with morphological analyses on coated films. J Coat Technol Res 10, 317–330 (2013). https://doi.org/10.1007/s11998-012-9448-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9448-0

Keywords

Navigation