Skip to main content
Log in

Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The results of a systematic study of the light sensitivity and long-term potential stability (30 days) of poly(pyrrole) (PPy), poly(3-octylthiophene) (POT), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(aniline) (PANI) and plasticised poly(vinyl chloride) (PVC) containing 20% (m/m) PANI are reported. Thin films were prepared either electrochemically or by the solution casting technique. This fundamental study is of importance because conducting polymers (CP) are commonly used as ion-to-electron transduction materials in all-solid-state solid contact ion-selective electrodes. The potential stability test done in 0.1 M KCl (pH 7.5) simulates the extreme situation when the CP-based SC becomes in direct contact with water. Films prepared of a nanodispersion of PANI showed both good potential stability and insensitivity to light even under illumination with very intensive light (>105 lx). In contrary, it was observed that POT is very light-sensitive. Upon illumination with intensive light, the potential responses of POT films prepared by solution casting and electropolymerisation were 315 and 590 mV, respectively. A room light sensitivity of approximately −10 to −15 mV was observed for these films. The other CPs in this study were insensitive to room light (∼150 lx), but were light-sensitive under illumination with intensive light. The potential drift of PPy(Cl) is below −10 μV/h (3–30 days), whereas the other most stable CPs in this study had a slightly higher potential drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oyama N, Hirokawa T, Yamaguchi S, Ushizawa N, Shimomura T (1987) Anal Chem 59:258

    Article  CAS  Google Scholar 

  2. Cadogan A, Gao Z, Lewenstam A, Ivaska A, Diamond D (1992) Anal Chem 64:2496

    Article  CAS  Google Scholar 

  3. Sutter J, Lindner E, Gyurcsányi R, Pretsch E (2004) Anal Bioanal Chem 380:7

    Article  CAS  Google Scholar 

  4. Bobacka J (2006) Electroanalysis 18:7

    Article  CAS  Google Scholar 

  5. Bobacka J, McCarrick M, Lewenstam A, Ivaska A (1994) Analyst 119:1985

    Article  CAS  Google Scholar 

  6. Paciorek R, van der Wal PD, de Rooij NF, Maj-Zurawska M (2003) Electroanalysis 15:1314

    Article  CAS  Google Scholar 

  7. Sutter J, Pretsch E (2006) Electroanalysis 18:19

    Article  CAS  Google Scholar 

  8. Chumbimuni-Torres KY, Rubinova N, Radu A, Kubota LT, Bakker E (2006) Anal Chem 78:1318

    Article  CAS  Google Scholar 

  9. Rubinova N, Chumbimuni-Torres K, Bakker E (2007) Sens Actuators B 121:135

    Article  Google Scholar 

  10. Sutter J, Radu A, Peper S, Bakker E, Pretsch E (2004) Anal Chim Acta 523:53

    Article  CAS  Google Scholar 

  11. Hulanicki A, Michalska A (1995) Electroanalysis 7:1

    Article  Google Scholar 

  12. Michalska A, Hulanicki A, Lewenstam A (1994) Analyst 119:2417

    Article  CAS  Google Scholar 

  13. Momma T, Yamamoto M, Komaba S, Osaka T (1996) J Electroanal Chem 407:91

    Article  Google Scholar 

  14. Gyurcsányi RE, Nybäck AS, Tóth K, Nagy G, Ivaska A (1998) Analyst 123:1339

    Article  Google Scholar 

  15. Michalska A, Dumanska J, Maksymiuk K (2003) Anal Chem 75:4964

    Article  CAS  Google Scholar 

  16. Michalska A, Appaih-Kusi C, Heng LY, Walkiewicz S, Hall EAH (2004) Anal Chem 76:2031

    Article  CAS  Google Scholar 

  17. Konopka A, Sokalski T, Michalska A, Lewenstam A, Maj-Zurawska M (2004) Anal Chem 76:6410

    Article  CAS  Google Scholar 

  18. Michalska A, Maksymiuk K (2004) Talanta 63:109

    Article  CAS  Google Scholar 

  19. Gyurcsányi R, Rangisetty N, Clifton S, Pendley BD, Lindner E (2004) Talanta 63:89

    Article  Google Scholar 

  20. Michalska A (2005) Electroanalysis 17:400

    Article  CAS  Google Scholar 

  21. Michalska A, Maksymiuk K (2005) J Electroanal Chem 576:339

    Article  CAS  Google Scholar 

  22. Konopka A, Sokalski T, Lewenstam A, Maj-Zurawska M (2006) Electroanalysis 18:2232

    Article  CAS  Google Scholar 

  23. Pawlowski P, Michalska A, Maksymiuk K (2006) Electroanalysis 18:1339

    Article  CAS  Google Scholar 

  24. Bobacka J (1999) Anal Chem 71:4932

    Article  CAS  Google Scholar 

  25. Bobacka J, Lewenstam A, Ivaska A (2001) J Electroanal Chem 509:27

    Article  CAS  Google Scholar 

  26. Bobacka J, Lahtinen T, Nordman J, Häggström S, Rissanen K, Lewenstam A, Ivaska A (2001) Electroanalysis 13:723

    Article  CAS  Google Scholar 

  27. Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2002) Sens Actuators B 82:7

    Article  Google Scholar 

  28. Michalska A, Ocypa M, Maksymiuk K (2006) Anal Bioanal Chem 385:203

    Article  CAS  Google Scholar 

  29. Sundfors F, Bereczki R, Bobacka J, Tóth K, Ivaska A, Gyurcsányi RE (2006) Electroanalysis 18:1372

    Article  CAS  Google Scholar 

  30. Ocypa M, Michalska A, Maksymiuk K (2006) Electrochim Acta 51:2298

    Article  CAS  Google Scholar 

  31. Vázquez M, Bobacka J, Ivaska A, Lewenstam A (2004) Talanta 62:57

    Article  Google Scholar 

  32. Vázquez M, Danielsson P, Bobacka J, Lewenstam A, Ivaska A (2004) Sens Actuators B 97:182

    Article  Google Scholar 

  33. Michalska A, Maksymiuk K (2004) Anal Chim Acta 523:97

    Article  CAS  Google Scholar 

  34. Cui G, Lee JS, Kim SJ, Nam H, Cha GS, Kim HD (1998) Analyst 123:1855

    Article  CAS  Google Scholar 

  35. Han WS, Park MY, Chung KC, Cho DH, Hong TK (2000) Anal Sci 16:1145

    Article  CAS  Google Scholar 

  36. Han WS, Park MY, Chung KC, Cho DH, Hong TK (2000) Electroanalysis 13:955

    Article  Google Scholar 

  37. Lindfors T, Ivaska A (2004) Anal Chem 76:4387

    Article  CAS  Google Scholar 

  38. Han WS, Chung KC, Kim MH, Ko HB, Lee YH, Hong TK (2004) Anal Sci 20:1419

    Article  CAS  Google Scholar 

  39. Kholoshenko NM, Ryasenskii SS, Gorelov IP (2006) Pharm Chem J 40:289

    Article  CAS  Google Scholar 

  40. Lindfors T, Aarnio H, Ivaska A (2007) Anal Chem 79:8571

    Article  CAS  Google Scholar 

  41. Fibbioli M, Morf WE, Badertscher M, de Rooij NF, Pretsch E (2000) Electroanalysis 12:1286

    Article  CAS  Google Scholar 

  42. de Marco R, Veder JP, Clarke G, Nelson A, Prince K, Pretsch E, Bakker E (2008) Phys Chem Chem Phys 10:73

    Article  Google Scholar 

  43. Lindfors T, Harju L, Ivaska A (2006) Anal Chem 78:3019

    Article  CAS  Google Scholar 

  44. Lindfors T, Ivaska A (2007) Anal Chem 79:608

    Article  CAS  Google Scholar 

  45. Lindfors T, Ivaska A (2002) J Electroanal Chem 531:43

    Article  CAS  Google Scholar 

  46. Lindfors T, Harju L (2008) Synth Met DOI 10.1016/j.synthmet.2008.01.009

  47. Lai CZ, Fierke MA, Stein A, Bühlmann P (2007) Anal Chem 79:4621

    Article  CAS  Google Scholar 

  48. Lindfors T, Bobacka J, Ivaska A (1997) Anal Chim Acta 355:217

    Article  CAS  Google Scholar 

  49. Li Y, Qian R (1993) Synth Met 53:149

    Article  CAS  Google Scholar 

  50. Wei D (2007) Organic electronic materials based on poly(aniline) derivatives. Doctoral Thesis, Åbo Akademi University (ISBN 978-952-12-1865-1)

  51. Pivrikas A (2006) Charge transport and recombination in bulk-heterojunction solar cells. Doctoral Thesis, Åbo Akademi University (ISBN 952-12-1786-3)

  52. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York (back cover)

    Google Scholar 

  53. Wei D, Pivrikas A, Karhu H, Majumdar HS, Lindfors T, Kvarnström C, Österbacka R, Ivaska A (2006) J Mater Chem 16:3014

    Article  CAS  Google Scholar 

  54. Gyurcsányi R, Lindner E (2002) Anal Chem 127:4060

    Article  Google Scholar 

  55. Wessling B (2007) Conductive polymers as organic nanometals (Chapter 1). In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, vol 2: conjugated polymers: processing and applications, part 1. Processing of conjugated polymers. CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Dr. Jörg Posdorfer at Ormecon GmbH is gratefully acknowledged for the PANI dispersion (D1003). The author is most grateful for discussions with Dr. Pia Sjöberg-Eerola and Prof. Johan Bobacka concerning POT and PEDOT, respectively. Many thanks also to Prof. Ronald Österbacka at Åbo Akademi University (Department of Physics, Centre of Functional Materials) for discussions of the light sensitivity of CPs. Finally, acknowledgments to Mr. Sten Lindholm for measuring the spectra of room light and the Leica light source. This work is part of the activities of the Åbo Akademi Process Chemistry Centre within the Finnish Centre of Excellence Program (Academy of Finland, 2000–2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lindfors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindfors, T. Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. J Solid State Electrochem 13, 77–89 (2009). https://doi.org/10.1007/s10008-008-0561-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0561-z

Keywords

Navigation