Skip to main content
Log in

-Comparison of σ/ π-hole aerogen-bonding interactions based on C2H4···NgOX2 (Ng = Kr, Xe; X = F, Cl, Br) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The geometric structure, energy properties, and electronic properties of the aerogen-bonding interaction formed by C2H4 and NgOX2 (Ng = Kr, Xe; X = F, Cl, Br) have been studied at the B2PLYP-D3(BJ)/ aug-cc-pVTZ (PP) level. Two kinds of aerogen-bonding interactions were observed among the title systems: the σ-hole and the π-hole complexes. The σ-hole aerogen-bonding complex has a binding energy in the range of − 6.29 ~  − 8.17 kcal/mol, which is the most stable. The binding energies of C2H4···NgOX2 increased as X = F < Cl < Br and Ng = KrOX2 < XeOX2 for the σ/π-hole aerogen-bonding complexes. The atoms in molecules (AIM), the non-covalent interaction (NCI) index, and the LMO-EDA energy decomposition analysis were adopted to study the nature of the σ/π-hole aerogen-bonding interaction. The results show that the electrostatic term contributes the most to the total interaction energy for the σ/π-hole aerogen-bonding complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Yes.

Code availability

Not applicable.

References

  1. Jing B, Ao Z, Zhao W, Xu Y, Chen Z, An T (2020) J Mater Chem A 8(39):20363–20372

    Article  CAS  Google Scholar 

  2. Chen XM, Liu ZJ, Tang JT, Teng CL, Deng Q (2015) J Porous Mater 22(2):361–367

    Article  Google Scholar 

  3. Yi Q, Niu F, Yu W (2011) Thin Solid Films 519(10):3155–3161

    Article  CAS  Google Scholar 

  4. Niu F, Yi Q (2011) Rare Met 30:102–105

    Article  CAS  Google Scholar 

  5. Su G, Liu L, Liu X, Zhang L, Xue J, Tang A (2021) Ceram 47(4):5374–5387

    CAS  Google Scholar 

  6. Huang J, Tan ZQ, Su HM, Guo Y, Liu H, Liao B, Liu Q (2020) J Cent South Univ 27(4):1247–1261

    Article  CAS  Google Scholar 

  7. Wu Q, Deng D, He Y, Zhou Z, Sang S, Zhou Z (2020) J Cent South Univ 27(2):344–355

    Article  CAS  Google Scholar 

  8. Zhang L, Zhao X, Yuan Z, Wu M, Zhou H (2021) J Mater Chem A 9(7):3855–3879

    Article  CAS  Google Scholar 

  9. Zhang HW, Lu YX, Li B, Huang GF, Zeng F, Li YY, Pan A, Chai YF, Huang WQ (2021) J MATER SCI TECHNOL 86:210–218

    Article  CAS  Google Scholar 

  10. Liu Q, Tang Z, Ou B, Liu L, Zhou Z, Shen S, Duan Y (2014) Mater Chem Phys 144(3):213–225

    Article  CAS  Google Scholar 

  11. Lu Q, Xu Y, Mu S, Li W (2017) New Carbon Mater 32(5):442–450

    Article  CAS  Google Scholar 

  12. Zhou H, Xiong Y, Wang T, Zeng J, Liu L, Jian J, Yuan Z, Zhou Z, Zeng L, Liu Q, Liu G (2018) Nanosci Nanotechnol Lett 10(12):1684–1689

    Article  Google Scholar 

  13. Liu Q, Xia B, Huang J, Liao B, Liu H, Ou B, Chen L, Zhou Z (2017) Mater Chem Phys 199:616–622

    Article  CAS  Google Scholar 

  14. Liu H, Li C, Li H, Ren Y, Chen J, Tang J, Yang Q (2020) ACS Appl Mater Interfaces 12(18):20354–20365

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Li G, Tang Z, Chen L, Liao B, Ou B, Zhou Z, Zhou H (2017) Mater Chem Phys 186:11–18

    Article  CAS  Google Scholar 

  16. Quintana M, Traboulsi H, Llanes-Pallas A, Marega R, Bonifazi D, Prato M (2012) ACS Nano 6(1):23–31

    Article  CAS  PubMed  Google Scholar 

  17. Steiner T (2002) Angew Chem Int Ed 41:14–76

    Google Scholar 

  18. Wang Z, Liu Z, Ding X, Yu X, Hou B, Yi P (2012) Comput Theor Chem 981:1–6

    Article  CAS  Google Scholar 

  19. Yuan X, Xiang T, Anderson BD, Munson EJ (2015) Mol Pharm 12(12):4518–4528

    Article  CAS  PubMed  Google Scholar 

  20. Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46(11):2686–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng B, Liu Y, Huang L, Wang Z, Liu H, Liu Y (2018) Mol Phys 116(14):1834–1843

    Article  CAS  Google Scholar 

  22. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116(4):2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Z, Zheng B, Yu X, Li X, Yi P (2010) J Chem Phys 132(16):164104

    Article  PubMed  Google Scholar 

  24. Bauza A, Frontera A (2020) Chem Rev 404:213112

    CAS  Google Scholar 

  25. Frontera A (2020) Molecules 25(15):3419

    Article  CAS  PubMed Central  Google Scholar 

  26. Bavafa S, Nowroozi A, Ebrahimi A (2020) Struct Chem 31(1):435–445

    Article  CAS  Google Scholar 

  27. Gomila RM, Frontera A (2020) Front Chem 8:395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Britvin SN (2020) Dalton Trans 49(18):5778–5782

    Article  CAS  PubMed  Google Scholar 

  29. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 85(8):1711–1713

    Article  CAS  Google Scholar 

  30. Zierkiewicz W, Michalczyk M, Scheiner S (2018) Phys Chem Chem Phys 20(7):4676–4687

    Article  CAS  PubMed  Google Scholar 

  31. Wang R, Liu H, Li Q, Scheiner S (2020) Phys Chem Chem Phys 22(7):4115–4121

    Article  CAS  PubMed  Google Scholar 

  32. Geo M, Cheng J, Li W, Xiao B, Li Q (2016) Chem Phys Lett 651:50–55

    Article  Google Scholar 

  33. Esrafili MD, Qasemsolb S (2017) Struct Chem 28(4):1255–1264

    Article  CAS  Google Scholar 

  34. Esrafili MD, Asadollahi S, Vakili M (2016) Int J Quantum Chem 116(16):1254–1260

    Article  CAS  Google Scholar 

  35. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13(2):291–296

    Article  CAS  PubMed  Google Scholar 

  36. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12(28):7748–7757

    Article  CAS  PubMed  Google Scholar 

  37. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18(2):541–548

    Article  CAS  PubMed  Google Scholar 

  38. Bauza A, Frontera A (2015) Angew Chem Int Ed 54(25):7340–7343

    Article  CAS  Google Scholar 

  39. Bauza A, Frontera A (2015) Phys Chem Chem Phys 17(38):24748–247532

    Article  CAS  PubMed  Google Scholar 

  40. Frontera A, Bauza A (2017) Phys Chem Chem Phys 19(44):30063–300684

    Article  CAS  PubMed  Google Scholar 

  41. Makarewicz E, Lundell J, Gordon AJ, Berski S (2016) J Comput Chem 37(20):1876–1886

    Article  CAS  PubMed  Google Scholar 

  42. Esrafili M, Vessally E (2016) Mol Phys 114(22):3265–3276

    Article  CAS  Google Scholar 

  43. Esrafili M, Mohammadian-Sabet F (2016) Chem Phys Lett 654:23–28

    Article  CAS  Google Scholar 

  44. Bauza A, Frontera A (2015) ChemPhysChem 16(17):3625–3630

    Article  CAS  PubMed  Google Scholar 

  45. Miao J, Song B, Gao Y (2015) Chem-Asian J 10(12):2614–2617

    Article  Google Scholar 

  46. Haner J, Schrobilgen G (2015) Chem Rev 115(2):1255–1295

    Article  CAS  PubMed  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB et al (2010) Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT.

  49. Su P, Li H (2009) J Chem Phys 131(1):014102

    Article  PubMed  Google Scholar 

  50. Bader RFW (1985) Acc Chem Res 18(1):9–15

    Article  CAS  Google Scholar 

  51. Lu T, Chen F (2012) J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  52. Pauling L (1941) J Chem Phys 2:482–482

    Article  Google Scholar 

  53. Bondi A (1964) J Phys Chem 68(3):441–451

    Article  CAS  Google Scholar 

  54. Cremer D, Kraka E (1984) Angew Chem Int Edit 23(8):627–628

    Article  Google Scholar 

  55. Jenkins S, Morrison I (2000) Chem Phys Lett 317(1–2):97–102

    Article  CAS  Google Scholar 

  56. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117(12):5529–5542

    Article  CAS  Google Scholar 

  57. Clark T, Murray JS, Politzer P (2018) Phys Chem Chem Phys 20(48):30076–30082

    Article  CAS  PubMed  Google Scholar 

  58. Politzer P, Murray JS, Clark T (2015) J Mol Model 21(3):52

    Article  PubMed  Google Scholar 

  59. Johnson E, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen A, Yang W (2010) J Am Chem Soc 132(18):6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Science and Technology Special Project of Guangdong Province (mmkj202009), the Hunan Provincial Natural Science Foundation of China (no. 2017JJ2095, 2018JJ2113) and the Scientific Research Fund of Hunan Provincial Education Department (16C0625).

Author information

Authors and Affiliations

Authors

Contributions

Yiqiang Deng and Zan Zhang: investigation and writing—original draft. Weiliang Cao: visualization. Yuan Liu: methodology and supervision. Baishu Zheng: writing—review and editing. Zhaoxu Wang: methodology, software, writing—review and editing.

Corresponding authors

Correspondence to Yuan Liu or Zhaoxu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zanzhang, Cao, W. et al. -Comparison of σ/ π-hole aerogen-bonding interactions based on C2H4···NgOX2 (Ng = Kr, Xe; X = F, Cl, Br) complexes. J Mol Model 28, 339 (2022). https://doi.org/10.1007/s00894-022-05290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05290-w

Keywords

Navigation