Skip to main content
Log in

Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this article, the CL-20, TNT, HMX, CL-20/TNT, CL-20/HMX and different CL-20/TNT/HMX cocrystal models were established. Molecular dynamics method was selected to optimize the structures, predict the stability, sensitivity, energetic performance, and mechanical properties of cocrystal models. The binding energy, trigger bond length, trigger bond energy, cohesive energy density, detonation parameters, and mechanical properties of each crystal model were obtained. The influences of co-crystallization and molar ratios on performances of cocrystal explosives were investigated and evaluated. The results show that the CL-20/TNT/HMX cocrystal explosive with a molar ratio of 3:1:2 or 3:1:3 had larger binding energy and better stability, i.e., CL-20/TNT/HMX cocrystal explosive was more likely to be formed with these molar ratios. The cocrystal explosive had shorter maximal trigger bond length, but larger trigger bond energy and cohesive energy density than CL-20, namely, the cocrystal explosive had lower mechanical sensitivity and better safety than CL-20 and the safety of cocrystal model was effectively improved. The cocrystal model with a molar ratio of 3:1:2 had the best safety. The energetic performance of the cocrystal explosive with a molar ratio of 3:1:1, 3:1:2, or 3:1:3 was the best. These CL-20/TNT/HMX cocrystal models exhibited better and more desirable mechanical properties. In a word, the cocrystal model with molar ratio of 3:1:2 exhibited the most superior properties and was a novel and potential high-energy-density compound. This paper could provide practical helpful guidance and theoretical support to better understand co-crystallization mechanisms and design novel energetic cocrystal explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  3. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  5. Guo CY, Zhang HB, Wang XC, Xu JJ, Liu Y, Liu XF, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  6. Xu HF, Duan XH, Li HZ, Pei CH (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    Article  CAS  Google Scholar 

  7. Yang ZW, Li HZ, Zhou XQ, Zhang CY, Huang H, Li JS, Nie FD (2012) Characterization and properties of a novel energetic–energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  8. Wu JT, Zhang JG, Li T, Li ZM, Zhang TL (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    Article  CAS  Google Scholar 

  9. Landenberger KB, Bolton O, Matzger AJ (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  CAS  Google Scholar 

  10. Lin H, Chen JF, Zhu SG, Li HZ, Huang Y (2017) Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive. J Energ Mater 35:95–108

    Article  CAS  Google Scholar 

  11. Zhang HB, Guo CY, Wang XC, Xu JJ, He X, Liu Y, Liu XF, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  Google Scholar 

  12. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High-power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  13. Yang ZW, Li HZ, Huang H, Zhou XQ, Li JS, Nie FD (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  14. Agrawal JP (2005) Some new high-energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  15. Foltz MF, Coon CL, Garcia F, Nichols AL (1994) The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, part I. Propellants Explos Pyrotech 19:19–25

    Article  CAS  Google Scholar 

  16. Chang SC, Henry PB (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  Google Scholar 

  17. Cady HH, Larson AC, Cromer DT (1963) The crystal of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–623

    Article  CAS  Google Scholar 

  18. Zhao XQ, Shi NC (1995) Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Google Scholar 

  19. Vrcelj RM, Sherwood JN, Kennedy AR, Gallagher HG, Gelbrich T (2003) Polymorphism in 2-4-6 trinitrotoluene. Cryst Growth Des 3:1027–1032

    Article  CAS  Google Scholar 

  20. Liu K, Zhang G, Luan JY, Chen ZQ, Su PF, Shu YJ (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 110:91–96

    Article  Google Scholar 

  21. Lin H, Zhu SG, Li HZ, Peng XH (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  22. Wang YP, Yang ZW, Li HZ, Zhou XQ, Zhang Q, Wang JH, Liu YC (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39:590–596

    Article  CAS  Google Scholar 

  23. Lin H, Zhu SG, Zhang L, Peng XH, Chen PY, Li HZ (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  24. Guo CY, Zhang HB, Wang XC, Liu XF, Sun J (2013) Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48:1351–1357

    Article  CAS  Google Scholar 

  25. Landenberger KB, Matzger AJ (2010) Cocrystal engineering of prototype energetic material: supramolecular chemistry of 2,4,6-trinitrotoluene. Cryst Growth Des 10:5341–5347

    Article  CAS  Google Scholar 

  26. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  27. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS forcefield. J Chem Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  28. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  29. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  Google Scholar 

  30. Qiu L, Xiao HM (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  31. Ma XF, Xiao JJ, Huang H, Ju XH, Li JS, Xiao HM (2006) Simulative calculation of mechanical property, binding energy and detonation property of TATB/fluorine-polymer PBX. Chin J Chem 24:473–477

    Article  CAS  Google Scholar 

  32. Zhu W, Xiao JJ, Zhu WH, Xiao HM (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088

    Article  CAS  Google Scholar 

  33. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on the relations of sensitivity with energy properties for HMX and HMX-based PBXs by molecular dynamics simulation. Physica B 407:3504–3509

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS (2015) Impact sensitivity and maximum heat of detonation. J Mol Model 21:262

    Article  Google Scholar 

  35. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21:52

    Article  Google Scholar 

  36. Stephen AD, Kumarashas P, Pawar RB (2011) Charge density distribution, electrostatic properties, and impact sensitivity of the high energetic molecule TNB: a theoretical charge density study. Propellants Explos Pyrotech 36:168–174

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible. Propellants Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  38. Zhu W, Wang XJ, Xiao JJ, Zhu WH, Sun H, Xiao HM (2009) Molecular dynamics simulations of AP/HMX composite with a modified force field. J Hazard Mater 167:810–816

    Article  CAS  Google Scholar 

  39. Xiao JJ, Li SY, Chen J, Ji GF, Zhu W, Zhao F, Wu Q, Xiao HM (2013) Molecular dynamics study on the correlation between structure and sensitivity for defective RDX crystals and their PBXs. J Mol Model 19:803–809

    Article  CAS  Google Scholar 

  40. Sun T, Xiao JJ, Liu Q, Zhao F, Xiao HM (2014) Comparative study on structure, energetic and mechanical properties of a ε-CL-20/HMX cocrystal and its composite with molecular dynamics simulation. J Mater Chem A 2:13898–13904

    Article  CAS  Google Scholar 

  41. Xiao JJ, Zhao L, Zhu W, Chen J, Ji GF, Zhao F, Wu Q, Xiao HM (2012) Molecular dynamics study on the relationships of modeling, structural and energy properties with sensitivity for RDX-based PBXs. Sci China Chem 55:2587–2594

    Article  CAS  Google Scholar 

  42. Xiao JJ, Wang WR, Chen J, Ji GF, Zhu W, Xiao HM (2012) Study on structure, sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation. Comput Theor Chem 999:21–27

    Article  CAS  Google Scholar 

  43. Xu XJ, Xiao HM, Ju XH, Gong XD (2005) Theoretical study on pyrolysis mechanism for ε-hexanitrohexaazaisowurtzitane. Chin J Org Chem 25:536–539

    CAS  Google Scholar 

  44. Geetha M, Nair UR, Sarwade DB, Gore GM, Asthana SN, Singh H (2003) Studies on CL-20: the most powerful high energy material. J Therm Anal Calorim 73:913–922

    Article  CAS  Google Scholar 

  45. Guo YX, Zhang HS (1983) Nitrogen equivalent coefficient and revised nitrogen equivalent coefficient equations for calculating detonation properties of explosives: detonation velocity of explosives. Explos Shock Waves 3:57–65

    Google Scholar 

  46. Wang YL, Yu WL (2011) Explosives, initiators and pyrotechnics. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

  47. Hang GY, Yu WL, Wang T, Wang JT, Li Z (2017) Comparative studies on structures, mechanical properties, sensitivity, stabilities and detonation performance of CL-20/TNT cocrystal and composite explosives by molecular dynamics simulation. J Mol Model 23:281

    Article  Google Scholar 

  48. Ou YX (2006) Explosives. Beijing Institute of Technology Press, Beijing

    Google Scholar 

  49. Jin SH, Song QC (2010) Explosive theory. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

  50. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing

    Google Scholar 

  51. Xu XJ, Xiao JJ, Huang H, Li JS, Xiao HM (2007) Molecular dynamics simulations on the structures and properties of ε-CL-20-based PBXs-primary theoretical studies on HEDM formulation design. Sci China Ser B Chem 50:737–745

    Article  CAS  Google Scholar 

  52. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  53. Pugh SF (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag 45:823–843

    Article  CAS  Google Scholar 

  54. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics. Mater Sci Technol 8:345–349

    Article  CAS  Google Scholar 

  55. Wu JL (1993) Mechanics of elasticity. Tongji University Press, Shanghai

    Google Scholar 

  56. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Yun Hang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, GY., Yu, WL., Wang, T. et al. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 25, 10 (2019). https://doi.org/10.1007/s00894-018-3887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3887-1

Keywords

Navigation