Skip to main content
Log in

Study on a novel energetic cocrystal of TNT/TNB

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new energetic cocrystal of TNT/TNB was obtained by evaporating ethanol at room temperature over a period of 3 days. It is found that the donor–acceptor π–π interaction, p–π interaction, and C–H···O hydrogen bond interaction are dominant in the formation of the cocrystal. In this work, physicochemical characteristics of cocrystal have also been studied using several methods: Optical Microscopy, Powder X-ray Diffraction, Single Crystal X-ray Diffraction and differential scanning calorimetry. It is shown that TNT and TNB molecules cocrystallize in a monoclinic system with space group P21/c and cell parameters a = 20.4570(8) Å, b = 6.1222(2) Å, c = 15.1635(6) Å, β = 110.091(4)°, and Z = 4. The cocrystal has a crystal density of 1.640 g cm−3 and H50 (50 % explosion characteristics of drop height) of 112.2 cm, which is higher than that of TNT (100 cm), TNB (77.8 cm) and most of the other explosives. The result shows that co-crystallization may help to improve the performance of TNT and TNB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HMX:

1,3,5,7-Tetranitro-1,3,5,7-tetrazocane

AP:

Ammonium perchlorate

RDX:

1,3,5-Trinitrohexahydro-1,3,5-triazine

TATB:

1,3,5-Triamino-2,4,6-trinitrobenzene

TNT:

2,4,6-Trinitrotoluene

CL-20:

2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane

TNB:

1,3,5-Trinitrobenzene

BTF:

Benxotrifuroxan

DTTD:

13,14-Dithiatricyclo[8,2,1,14,71-tetradeca-4,6,10,12-tetraene

TNP:

2,4,6-Trinitrophenol

Reference

  1. Wöhler F (1844) Annalen 51:145. doi:10.1002/jlac.18440510202

    Google Scholar 

  2. Ling AR, Baker JL (1893) J Chem Soc 63:1314. doi:10.1039/ct8936301314

    Article  CAS  Google Scholar 

  3. Lara-Ochoa F, Espinosa-Perez G (2007) Supramol Chem 19:553. doi:10.1080/10610270701501652

    Article  CAS  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) Drug Discov Today 13:440. doi:10.1016/j.drudis.2008.03.004

    Article  CAS  Google Scholar 

  5. Bond DA (2007) CrystEng Comm 9:833. doi:10.1039/b708112j

    CAS  Google Scholar 

  6. Oswald IDH, Motherwell SWD, Parsons SA (2004) Acta Cryst E 60:01967. doi:10.1107/s1600536804024547

    Article  Google Scholar 

  7. Basavoju S, Boström D, Velaga PS (2006) Cryst Growth Des 6:2699. doi:10.1021/cg060327x

    Article  CAS  Google Scholar 

  8. Ishweshwar P, McMahon JA, Bis JA, Zaworotko M (2006) J Pharm Sci 95:499. doi:10.1002/jps.20578

    Article  Google Scholar 

  9. Horst JHT, Deij MA, Cains PW (2009) Cryst Growth Des 9:1531. doi:10.1021/cg801200h

    Article  Google Scholar 

  10. Miroshnyk I, Mirza S, Sandler N (2009) Expert Opin Drug Deliv 6:333. doi:10.1517/17425240902828304

    Article  CAS  Google Scholar 

  11. Aher S, Dhumal R, Mahadik K, Paradkar A (2010) Eur J Mater Sci 41:597. doi:10.1016/j.ejps.2010.08.012

    CAS  Google Scholar 

  12. Kamenar BB, Prout CK (1965) Molecular complexes. Part I. The crystal and molecular structure of the 1:1 adduct of benxotrifuroxan and 13,14-dithiatricyclo [8,2,1,14,7] tetradeca-4,6,10,12-tetraene. doi:10.1039/JR9650004838

  13. Vrcelj RM, Boese R, Thallapally PK, Desiraju GR (2003) Cryst Growth Des 3:1033. doi:10.1021/cg034141z

    Article  Google Scholar 

  14. Herbstein FH, Kaftory M (1975) Acta Cryst B 31:60. doi:10.1107/S0567740875002117

    Article  Google Scholar 

  15. Vrcelj RM, Sherwood JN, Kennedy AR, Gallagher HG, Gelbrich T (2003) Cryst Growth Des 3:1027. doi:10.1021/cg0340704

    Article  CAS  Google Scholar 

  16. Näther C, Arad C, Bock H (1997) Acta Cryst C 53:76. doi:10.1107/S0108270196011766

    Article  Google Scholar 

  17. Landenberger KB, Matzger AJ (2010) Cryst Growth Des 10:5341. doi:10.1021/cg101300n

    Article  CAS  Google Scholar 

  18. Landenberger KB, Matzger AJ (2012) Cryst Growth Des 12:3603. doi:10.1021/cg3004245

    Article  CAS  Google Scholar 

  19. Millar IAD, Maynard-Casely EH (2012) CrystEng Comm 14:3742. doi:10.1039/c2ce05796d

    CAS  Google Scholar 

  20. Levinthal ML (1978) Patent US4086110

  21. Zhou RQ, Cao DL, Wang JL (2007) CHN J Energ Mater 2:49

    Google Scholar 

  22. Shen JP, Duan XH, Luo QP et al (2011) Cryst Growth Des 11:1759. doi:10.1021/cg1017032

    Article  CAS  Google Scholar 

  23. Bolton O, Matzger AJ (2011) Angew Chem Int Ed 50:8960. doi:10.1002/anie.201104164

    Article  CAS  Google Scholar 

  24. Jetti KRR, Boese R, Thallapally KP (2003) Cryst Growth Des 3:1033. doi:10.1021/cg034141z

    Article  CAS  Google Scholar 

  25. Shu XY, Tian Y, Sun J et al (2011) J Mater Sci 46:2536. doi:10.1007/s10853-010-5105-0

    Article  CAS  Google Scholar 

  26. Li YC, Liu W, Pang SP (2012) Molecules 17:5040. doi:10.3390/molecules17055040

    Article  CAS  Google Scholar 

  27. Xiao JJ, Hui H, Li JS et al (2008) J Mater Sci 43:5685. doi:10.1007/s10853-008-2704-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation (No. 10979037); the Science Foundation of China Academy of Engineering Physics (No. 2012A0302013); and the Science Foundation of Institute of Chemical Materials, China Academy of Engineering Physics (No. 62601946), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, C., Zhang, H., Wang, X. et al. Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48, 1351–1357 (2013). https://doi.org/10.1007/s10853-012-6881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6881-5

Keywords

Navigation