Skip to main content
Log in

Competition between tetrel bond and pnicogen bond in complexes of TX3-ZX2 and NH3

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The complexes formed between TX3–ZX2 (T = C, Si, Ge; Z = P, As, Sb; X = F, Cl) and NH3 were studied at the MP2/aug-cc-pVTZ(PP) level. For each TX3–ZX2, two types of complex were obtained. For CX3-ZX2, NH3 is inclined to approach the σ-hole on the Z atom, forming a pnicogen bond. For TX3–ZX2 (T = Si and Ge), however, the base favors engaging in a tetrel bond with the σ-hole on the T atom although the corresponding pnicogen-bonded complex is also stable. When NH3 approaches the CX3 terminal of CX3–ZX2, weak interactions are observed that may be classified as van der Waals interactions. The relative stability of both types of complexes is not affected by the substituent X. The tetrel bond is very strong and the largest interaction energy is up to −144 kJ mol−1. Dispersion is dominant in the weak van der Waals complexes, while tetrel- and pnicogen-bonded complexes are dominated by electrostatic interactions, with comparable contributions from polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider HJ (2009) Angew Chem Int Ed 48:3924–3977

    Article  CAS  Google Scholar 

  2. Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525–5534

    Article  CAS  Google Scholar 

  3. Vickaryous WJ, Herges R, Jonhson DW (2004) Angew Chem Int Ed 43:5831–5833

    Article  CAS  Google Scholar 

  4. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  PubMed  Google Scholar 

  5. Iwaoka M, Takemoto S, Tomoda S (2002) J Am Chem Soc 124:10613–10620

    Article  CAS  PubMed  Google Scholar 

  6. Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Model 13:1033–1038

    Article  CAS  PubMed  Google Scholar 

  7. Scheiner S (2013) Acc Chem Res 46:280–288

    Article  CAS  PubMed  Google Scholar 

  8. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Article  CAS  Google Scholar 

  9. Bauzá A, Mooibroek TJ, Frontera A (2016) Chem Rec 16:473–487

    Article  CAS  PubMed  Google Scholar 

  10. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  PubMed  Google Scholar 

  11. Alkorta I, Elguero J, Del Bene JE (2013) J Phys Chem A 117:10497–10503

    Article  CAS  PubMed  Google Scholar 

  12. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) ChemPhysChem 13:1205–1212

    Article  CAS  PubMed  Google Scholar 

  13. Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) J Phys Chem A 116:2547–2553

    Article  CAS  PubMed  Google Scholar 

  14. Del Bene JE, Alkorta I, Elguero J (2015) Phys Chem Chem Phys 17:30729–30735

    Article  CAS  PubMed  Google Scholar 

  15. Li QZ, Guo X, Yang X, Li WZ, Cheng JB, Li HB (2014) Phys Chem Chem Phys 16:11617–11625

    Article  CAS  PubMed  Google Scholar 

  16. Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015) Chem Phys Lett 620:7–12

    Article  CAS  Google Scholar 

  17. Liu MX, Li QZ, Scheiner S (2017) Phys Chem Chem Phys 19:5550–5559

    Article  CAS  PubMed  Google Scholar 

  18. Bauzá A, Frontera A, Mooibroek TJ (2016) Phys Chem Chem Phys 18:1693–1698

    Article  CAS  PubMed  Google Scholar 

  19. Legon AC (2017) Phys Chem Chem Phys 19:14884–14896

    Article  CAS  PubMed  Google Scholar 

  20. Scheiner S (2017) J Phys Chem A 121:5561–5568

    Article  CAS  PubMed  Google Scholar 

  21. Martín-Fernández C, Montero-Campillo MM, Alkorta I, Elguero J (2017) J Phys Chem A 121:7424–7431

    Article  CAS  PubMed  Google Scholar 

  22. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  PubMed  Google Scholar 

  23. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012) J Mol Model 18:541–548

    Article  CAS  PubMed  Google Scholar 

  24. Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834

    Article  CAS  PubMed  Google Scholar 

  25. Bauzá A, Mooibroek TJ, Frontera A (2016) ChemPhysChem 17:1608–1614

    Article  CAS  PubMed  Google Scholar 

  26. Scheiner S (2011) J Phys Chem A 115:11202–11209

    Article  CAS  PubMed  Google Scholar 

  27. Mani D, Arunan E (2013) Phys Chem Chem Phys 15:14377–14383

    Article  CAS  PubMed  Google Scholar 

  28. Gao L, Zeng YL, Zhang XY, Meng LP (2016) J Comput Chem 37:1321–1327

    Article  CAS  PubMed  Google Scholar 

  29. Bauzá A, Frontera A (2015) ChemPhysChem 16:3108–3113

    Article  CAS  PubMed  Google Scholar 

  30. Zhou PP, Yang X, Ye WC, Zhang LW, Yang F, Zhou DG, Liu SB (2016) New J Chem 40:9139–9147

    Article  CAS  Google Scholar 

  31. Wei YX, Li QZ (2018) Mol Phys 116:222–230

    Article  CAS  Google Scholar 

  32. Xu HL, Cheng JB, Yang X, Liu ZB, Li WZ, Li QZ (2017) ChemPhysChem 18:2442–2450

    Article  CAS  PubMed  Google Scholar 

  33. Dong WB, Yang X, Cheng JB, Li WZ, Li QZ (2018) J Fluor Chem 207:38–44

    Article  CAS  Google Scholar 

  34. Solimannejad M, Ramezani V, Trujillo C, Alkorta I, Sánchez-Sanz G, Elguero J (2012) J Phys Chem A 116:5199–5206

    Article  CAS  PubMed  Google Scholar 

  35. Lang T, Li XY, Meng LP, Zheng SJ, Zeng YL (2015) Struct Chem 26:213–221

    Article  CAS  Google Scholar 

  36. Nziko Vde PN, Scheiner S (2016) Phys Chem Chem Phys 18:3581–3590

    Article  CAS  PubMed  Google Scholar 

  37. Liu MX, Li QZ, Li WZ, Cheng JB, McDowell SAC (2016) RSC Adv 6:19136–19143

    Article  CAS  Google Scholar 

  38. Wei QC, Li QZ, Cheng JB, Li WZ, Li HB (2016) RSC Adv 6:79245–79253

    Article  CAS  Google Scholar 

  39. Scheiner S (2015) J Phys Chem A 119:9189–9199

    Article  CAS  PubMed  Google Scholar 

  40. Grabowski SJ (2013) Chem Eur J 19:14600–14611

    Article  CAS  PubMed  Google Scholar 

  41. Li QZ, Zhu HJ, Zhuo HY, Yang X, Li WZ, Cheng JB (2014) Spectrochim Acta A 132:271–277

    Article  CAS  Google Scholar 

  42. Esrafili MD (2016) Mol Phys 114:1847–1855

    Article  CAS  Google Scholar 

  43. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  44. Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Scalmani G, Cossi M, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VGDS, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Gonzalez C, Wong MW, Pople JA (2009) Gaussian 09, revision A02. Gaussian Inc., Wallingford

    Google Scholar 

  47. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1691

    Article  CAS  PubMed  Google Scholar 

  48. Bader RFW (1990) Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford

    Google Scholar 

  49. Bader RFW (2000) AIM2000 Program, Version 2.0. McMaster University, Hamilton Canada

    Google Scholar 

  50. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  51. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  52. Su PF, Li H (2009) J Chem Phys 13:014102

    Article  CAS  Google Scholar 

  53. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  54. Scheiner S (2011) Chem Phys 387:79–84

    Article  CAS  Google Scholar 

  55. Keyvani ZA, Shahbazian S, Zahedi M (2016) Chem Eur J 22:5003–5009

    Article  CAS  PubMed  Google Scholar 

  56. Alkorta I, Sanchez-Sanz G, Elguero J (2014) J Phys Chem A 118:1527–1537

    Article  CAS  PubMed  Google Scholar 

  57. Arnold WD, Oldfield E (2000) J Am Chem Soc 122:12835–12841

    Article  CAS  Google Scholar 

  58. Politzer P, Murray JS, Clark T (2015) J Mol Model 21:52

    Article  CAS  PubMed  Google Scholar 

  59. Hellmann H (1933) Z Phys 85:180–190

    Article  CAS  Google Scholar 

  60. Feynman RP (1939) Phys Rev 56:340–343

    Article  CAS  Google Scholar 

  61. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, Z. Competition between tetrel bond and pnicogen bond in complexes of TX3-ZX2 and NH3. J Mol Model 24, 247 (2018). https://doi.org/10.1007/s00894-018-3732-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3732-6

Keywords

Navigation