Skip to main content
Log in

Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics method was employed to study the binding energies on the selected crystal planes of the ε-, γ-, β-conformation 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (ε-, γ-, β-CL-20) cocrystal explosives with 1,1-diamino-2,2-dinitroethylene (FOX-7), 1,3,5,7-tetranitro- 1,3,5,7-tetrazacyclooctane with β-conformation (β-HMX) and N,N-dimethylformamide (DMF) in different molar ratios. The oxygen balance, density, detonation velocity, detonation pressure, and surface electrostatic potential were analyzed. The results indicate that the binding energies E b * and stabilities are in the order of 1:1 > 2:1 > 3:1 > 5:1 > 8:1 (CL-20:FOX-7/β-HMX/DMF). The values of E b * and stabilities of the energetic-nonenergetic CL-20/DMF cocrystals are far larger than those of the energetic-energetic CL-20/FOX-7 and CL-20/β-HMX, and those of CL-20/β-HMX are the smallest. For CL-20/FOX-7 and CL-20/β-HMX, the largest E b * appears in the cocrystals with the 1:1, 1:2 or 1:3 molar ratio, and the stabilities of the cocrystals with the excess ratio of CL-20 are weaker than those in the cocrystals with the excess ratio of FOX-7 or β-HMX. In CL-20/FOX-7, CL-20 prefers adopting the γ-form, and ε-CL-20 is the preference in CL-20/β-HMX, and ε-CL-20 and β-CL-20 can be found in CL-20/DMF. The CL-20/FOX-7 and CL-20/β-HMX cocrystals with low molar ratios can meet the requirements of low sensitive high energetic materials. Surface electrostatic potential reveals the nature of the sensitivity change upon the cocrystal formation.

MD method was employed to study the binding energies on the selected crystal planes in the ε-, γ-, β-CL-20 cocrystals with FOX-7, β-HMX and DMF in different molar ratios. Surface electrostatic potential reveals the nature of the sensitivity change in cocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Keshavarz MH, Pouretedal HR (2010) Simple relationship for predicting impact sensitivity of nitroaromatics, nitramines, and nitroaliphatics. Propellants Explos Pyrotech 35:175–181

    Article  CAS  Google Scholar 

  2. Zhao J, Xu DH, Cheng XL (2010) Investigation of correlation between impact sensitivities and bond dissociation energies in some triazole energetic compounds. Struct Chem 21:1235–1240

    Article  CAS  Google Scholar 

  3. Li JS (2010) A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy. J Hazard Mater 174:728–733

    Article  CAS  Google Scholar 

  4. Li JS (2010) A quantitative relationship for the shock sensitivities of energetic compounds based on X–NO2 (X = C, N, O) bond dissociation energy. J Hazard Mater 180:768–772

    Article  CAS  Google Scholar 

  5. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  6. Tan BS, Long XP, Peng RF, Li HB, Jin B, Chu SJ, Dong HS (2010) Two important factors influencing shock sensitivity of nitro compounds: bond dissociation energy of X–NO2 (X = C, N, O) and Mulliken charges of nitro group. J Hazard Mater 183:908–912

    Article  CAS  Google Scholar 

  7. Delpuech A, Cherville J (1979) Relation entre la structure electronique et la sensibilité au choc des explosifs secondaires nitrés. Critère moléculaire de sensibilité II. Cas des esters nitriques. Propellants Explos Pyrotech 4:121–128

    Article  CAS  Google Scholar 

  8. Xiao HM (1994) Molecular orbital theory of nitro-compound. Publishing House of Defense Industry, Peking

    Google Scholar 

  9. Jean-Marie L (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed 27:89–112

    Article  Google Scholar 

  10. Lara-Ochoa F, Espinosa-Pérez G (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  CAS  Google Scholar 

  11. Kira BL, Onas B, Adam JM (2013) Two isostructural explosive cocrystals with significantly different thermodynamic stabilities. Angew Chem Int Ed 52:6468–6471

    Article  Google Scholar 

  12. Zhang H, Guo C, Wang X, Xu J, He X, Liu Y, Liu X, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions. Cryst Growth Des 13:679–687

    Article  Google Scholar 

  13. Onas B, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

    Article  Google Scholar 

  14. Onas B, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: A 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  Google Scholar 

  15. Guo C, Zhang H, Wang X, Xua J, Liu Y, Liu X, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  16. Wang Y, Yang Z, Li H, Zhou X, Zhang Q, Wang J, Liu Y (2014) A novel cocrystal explosive of HNIW with good comprehensive properties. Propellants Explos Pyrotech 39(4):590–596

    Article  CAS  Google Scholar 

  17. Yang Z, Li H, Zhou X, Zhang C, Huang H, Li J, Nie F (2012) Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 12:5155–5158

    Article  CAS  Google Scholar 

  18. Evers J, Ivan G, Manuel J, Thomas MK, Jörg S (2014) Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-Di(1H-tetrazol-5-yl)ethane. Inorg Chem 53:11749–11756

    Article  CAS  Google Scholar 

  19. David IAM, Helen EMC, David RA, Adam SC, Alistair RL, Alexandra JM, Iain DHO, Chiu CT, Colin RP (2012) Crystal engineering of energetic materials: Co-crystals of CL-20. CrystEngComm 14:3742–3749

    Article  Google Scholar 

  20. Li H, Shu Y, Gao S, Chen L, Ma Q, Ju X (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19:4909–4917

    Article  CAS  Google Scholar 

  21. Lin H, Zhu SG, Li HZ, Peng XH (2013) Synthesis, characterization, AIM and NBO analysis of HMX/DMI cocrystal explosive. J Mol Struct 1048:339–348

    Article  CAS  Google Scholar 

  22. Wei C, Duan X, Liu C, Liu Y, Li J (2009) Molecular simulation on co-crystal structure of HMX/TATB. Acta Chim Sin 67:2822–2826

    CAS  Google Scholar 

  23. Jin PS, Duan XH, Luo QP, Zhou Y, Bao Q, Ma YJ, Pei CH (2011) Preparation and characterization of a novel cocrystal explosive. Cryst Growth Des 11:1759–1765

    Article  Google Scholar 

  24. Wei C, Huang H, Duan X, Pei C (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  25. Landenberger KB, Matzger AJ (2012) Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 12:3603–3609

    Article  CAS  Google Scholar 

  26. Lin H, Zhu S, Li H, Peng X (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  27. Lin H, Zhu S, Zhang L, Peng X, Chen P, Li H (2013) Intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of HMX/NTO cocrystal explosive. Int J Quantum Chem 113:1591–1599

    Article  CAS  Google Scholar 

  28. Gu B, Lin H, Zhu S (2014) Ab initio studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/ 1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory. J Appl Phys 115:143509-1–143509-8

    Google Scholar 

  29. Lin H, Zhu SG, Zhang L, Peng XH, Li HZ (2014) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  Google Scholar 

  30. Zhang C, Cao Y, Li H, Zhou Y, Zhou J, Gao T, Zhang H, Yang Z, Jiang G (2013) Toward low-sensitive and high-energetic cocrystal I: evaluation of the power and the safety of observed energetic cocrystals. CrystEngComm 15:4003–4014

    Article  CAS  Google Scholar 

  31. Zhang C, Xue X, Cao Y, Zhou J, Zhang A, Li H, Zhou Y, Xu R, Gao T (2014) Toward low-sensitive and high-energetic cocrystal II: structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic co-crystals. CrystEngComm 16:5905–5916

    Article  CAS  Google Scholar 

  32. Li Y, Chen S, Ren F, Jin S (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21:245-1~245-13

  33. Ding X, Gou R, Ren F, Liu F, Zhang S, Gao H (2015) Molecular dynamics simulation and density functional theory insight into the cocrystal explosive of hexaazaisowurtzitane/nitroguanidine. Int J Quantum Chem 2:88–96

  34. Gao H, Zhang S, Ren F, Liu F, Gou R, Ding X (2015) Theoretical insight into the co-crystal explosive of 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20)/1,1-diamino-2,2-dinitroethylene (FOX-7). Comp Mater Sci 107:33–41

    Article  CAS  Google Scholar 

  35. Yang Z, Li H, Huang H, Zhou X, Li J, Nie F (2013) Preparation and performance of a HNIW/TNT cocrystal explosive. Propellants Explos Pyrotech 38:495–501

    Article  CAS  Google Scholar 

  36. Yan QL, Zeman S, Elbeih A, Song ZW, Málek J (2012) The effect of crystal structure on the thermal reactivity of CL-20 and its C4 bonded explosives (I): thermodynamic properties and decomposition kinetics. J Therm Anal Calorim 112:823–836

  37. Bolotina NB, Hardie MJ, Speer RL Jr, Pinkerton A (2004) Energetic materials: variable-temperature crystal structures of Γ-and ε-HNIW polymorphs. J Appl Crystallogr 37:808–814

    Article  CAS  Google Scholar 

  38. Holtz E, Ornellas D, Foltz MF, Clarkson JE (1994) The solubility of ε-CL-20 in selected materials. Propellants Explos Pyrotech 19:206–212

    Article  Google Scholar 

  39. Jessica HU, Jennifer AS (2014) Solvent effects on the growth morphology and phase purity of CL-20. Cryst Growth Des 14:1642–1649

    Article  Google Scholar 

  40. Beyer T, Day GM, Price SL (2001) The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. J Am Chem Soc 123:5086–5094

    Article  CAS  Google Scholar 

  41. Hartman P, Bennema P (1980) The attachment energy as a habit controlling factor: I. Theoretical considerations. J Cryst Growth 49:145–156

    Article  CAS  Google Scholar 

  42. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I. Acta Cryst 8:49–52

    Article  CAS  Google Scholar 

  43. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812

    Article  CAS  Google Scholar 

  44. Russell TP, Miller PJ, Piermarini GJ, Block S (1993) Pressure/temperature phase diagram of hexanitrohexaazaisowurtzitane. J Phys Chem 97:1993–1997

    Article  CAS  Google Scholar 

  45. Gilardi R (1999) CCCD 127539, Cambridge structural database. Cambridge Crystallographic Data Center, Cambridge

    Google Scholar 

  46. Chang BC, Choi S, Boutin HP (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  Google Scholar 

  47. Choi CS, Prince H (1972) The crystal structure of cyclotrimethylenetrinitramine. Acta Crystallogr B 28:2857–2862

    Article  CAS  Google Scholar 

  48. Accelrys Software Inc. (2013) Materials Studio 7.0. San Diego

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc. , Wallingford

  50. Lu T (2014) Multiwfn: a multifunctional wavefunction analyzer, version 3.3.5. Beijing

  51. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

  52. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  53. Shim HM, Kim JW, Koo KK (2013) Molecular interaction of solvent with crystal surfaces in the crystallization of ammonium sulfate. J Cryst Growth 373:64–68

    Article  CAS  Google Scholar 

  54. Shen F, Lv P, Sun C, Rubo Zhang R, Pang S (2014) The crystal structure and morphology of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-Xylene solvate: a joint experimental and simulation study. Molecules 19:18574–18589

    Article  Google Scholar 

  55. Trzciński WA, Cudziło S, Chyłek Z, Szymańczyk L (2008) Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). J Hazard Mater 157:605–612

    Article  Google Scholar 

  56. Latypov NV, Bergman J, Langlet A, Wellmar U, Bemm U (1998) Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene. Tetrahedron 54:11525–11536

    Article  CAS  Google Scholar 

  57. Dong H, Zhou F (1989) High energetic explosives and relatives. Beijing Science Press, Peking

  58. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  59. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223–2230

    Article  Google Scholar 

  60. Murray JS, Concha MC, Politzer P (2009) Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C–NO2/N–NO2 bond dissociation energies. Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  61. Politzer P, Murray JS (2014) In: Brinck T (ed) Green energetic materials. Wiley, Chichester, UK. doi:10.1002/9781118676448

  62. Politzer P, Murray JS (2014) Detonation performance and sensitivity: a quest for balance. Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  63. Politzer P, Murray JS (1996) Relationships between dissociation energies and electrostatic potentials of C–NO2 bonds: applications to impact sensitivities. J Mol Struct 376:419–424

    Article  CAS  Google Scholar 

  64. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: application to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  65. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25. doi: 10.1007/s00894-015-2578-4

  66. Murray JS, Lane P, Politzer P (1995) Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  67. Politzer P, Murray JS (1995) C–NO2 dissociation energies and surface electrostatic potential maxima in relation to the impact sensitivities of some nitroheterocyclic molecules. Mol Phys 86:251–255

  68. Politzer P, Murray JS, Concha MC, Lane P (2007) Effects of electric fields upon energetic molecules: nitromethane and dimethylnitramine. Cent Eur J Energ Mater 4:3–21

    CAS  Google Scholar 

  69. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  70. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21: 262.- doi: 10.1007/s00894-015-2793-z

Download references

Acknowledgments

This work was supported by Research for Shanxi Natural Science Foundation (2012021027–3) and Shanxi Provincial Projects for Science and Technology Development (20140311008–7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-zhi Feng.

Ethics declarations

We have full control of all primary data and allow the journal to review all the data. We confirm the validity of the results. We have no financial relationships. The manuscript is not submitted to more than one journal, and it was not published previously. This study is not split up into several parts to increase the quantity of submissions. No data have been fabricated or manipulated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Rz., Zhang, Sh., Ren, Fd. et al. Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. J Mol Model 22, 123 (2016). https://doi.org/10.1007/s00894-016-2998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2998-9

Keywords

Navigation