Skip to main content
Log in

Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: a theoretical and experimental study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, the newly synthesized non-centrosymmetric, 4-dimethylamino-3′-isothiocyanatochalcone (PKA) compound was presented. This compound belongs to the chalcone group, and its main purpose is to be used in biomedical imaging as a fluorescence dye. For this reason, the linear and nonlinear properties in solvents of different polarity were thoroughly studied. In accordance with the requirements for a fluorochrome, the PKA compound is characterized by strong absorption, large Stokes’ shifts, relatively high fluorescence quantum yields and high nonlinear optical response. Moreover, the isothiocyanate reactive probe was conjugated with Concanavalin A. Conventional fluorescence microscopy imaging of Candida albicans cells incubated with the PKA-Concanavalin A, is presented. The results of this study show that the novel conjugate PKA-Concanavalin A could be a promising new probe for cellular labelling in biological and biomedical research.

Spectroscopic behavior of the PKA dye

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Miyata S, Nalwa HS (1997) Organic electroluminescent materials and derivatives. Gordon and Breach, Tokyo

    Google Scholar 

  2. Müller TJJ, Bunz UHF (2007) Functional organic materials. Syntheses, strategies, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  3. Tang CW, Van Slyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915. doi:10.1063/1.98799

    Article  CAS  Google Scholar 

  4. Pu L (1998) 1,10-Binaphthyl dimers, oligomers, and polymers: molecular recognition, asymmetric catalysis, and new Materials. Chem Rev 98:2405–2494. doi:10.1021/cr970463w

    Article  CAS  Google Scholar 

  5. Berresheim AJ, Müller M, Müllen K (1999) Polyphenylene nanostructures. Chem Rev 99:1747–1785. doi:10.1021/cr970073+

    Article  CAS  Google Scholar 

  6. Hide F, Diaz-Garcia MA, Schwartz BJ, Heeger AJ (1997) New developments in the photonic applications of conjugated polymers. Acc Chem Res 30:430–436. doi:10.1021/ar950191o

    Article  CAS  Google Scholar 

  7. Gaylord BS, Wang S, Heeger AJ, Bazan GC (2001) Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescencequenching efficiencies. J Am Chem Soc 123:6417–6418. doi:10.1021/ja010373f

    Article  CAS  Google Scholar 

  8. Ng MK, Lee DC, Yu L (2002) Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc 124:11862–11863. doi:10.1021/ja026808w

    Article  CAS  Google Scholar 

  9. Shimizu H, Fujimoto K, Furusyo M, Maeda H, Nanai Y, Mizuno K, Inouye M (2007) Highly emissive π-conjugated alkynylpyrene oligomers: their synthesis and photophysical properties. J Org Chem 72:1530–1533. doi:10.1021/jo061959t

    Article  CAS  Google Scholar 

  10. Panda P, Veldman D, Sweelssen J, Bastiaansen JJAM, Langeveld-Voss BMW, Meskers SCJ (2007) Charge transfer absorption for π-conjugated polymers and oligomers mixed with electron acceptors. J Phys Chem B 111:5076–5081. doi:10.1021/jp070796p

    Article  CAS  Google Scholar 

  11. Jenekhe SA (1995) Excited-state complexes of conjugated polymers. Adv Mater 7:309–311. doi:10.1002/adma.19950070314

    Article  CAS  Google Scholar 

  12. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew Chem 37:402–428

  13. Khemthongcharoen N, Jolivot R, Rattanavarin S, Piyawattanametha W (2014) Advances in imaging probes and optical microendoscopic imaging techniques for early in vivo cancer assessment. Adv Drug Deliv Rev 74:53–74. doi:10.1016/j.addr.2013.09.012

    Article  CAS  Google Scholar 

  14. Cassette E, Helle M, Bezdetnaya L, Marchal F, Dubertret B, Pons T (2013) Design of new quantum dot materials for deep tissue infrared imaging. Adv Drug Deliv Rev 65:719–731. doi:10.1016/j.addr.2012.08.016

    Article  CAS  Google Scholar 

  15. Kikuchi K (2010) Design, synthesis and biological applications of chemical probes for bio-imaging. Chem Soc Rev 39:2048–2053. doi:10.1039/B819316A

    Article  CAS  Google Scholar 

  16. Chen M, Yin M (2014) Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci 39:365–395. doi:10.1016/j.progpolymsci.2013.11.001

    Article  CAS  Google Scholar 

  17. Robinson JP, Strugis J, Kumar GL (2009) Chapter 10: Immunofluorescence. In: IHC Staining Methods, 5th edn. Dako, Carpinteria, CA

  18. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi:10.1103/physrev.136.b864

    Article  Google Scholar 

  19. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/physrev.140.a1133

    Article  Google Scholar 

  20. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  21. Salahub EDR, Zerner MC (1989) The challenge of d and f electrons. ACS, Washington, DC

    Book  Google Scholar 

  22. Sosa C, Lee C (1993) Density-functional description of transition structures using nonlocal corrections. Silylene insertion reactions into the hydrogen molecule. J Chem Phys 98:8004–8011. doi:10.1063/1.464554

    Article  CAS  Google Scholar 

  23. Scuseria GE (1992) Comparison of coupled-cluster results with a hybrid of Hartree-Fock and density functional theory. J Chem Phys 97:7528–7530. doi:10.1063/1.463977

    Article  CAS  Google Scholar 

  24. Labanowski EJK, Andzelm JW (1991) Density functional methods in chemistry. Springer, New York

    Book  Google Scholar 

  25. Kurt M, Sertbakan TR, Ozduran M (2008) An experimental and theoretical study of molecular structure and vibrational spectra of 3- and 4-pyridineboronic acid molecules by density functional theory calculations. Spectrochim Acta A 70(3):664–673. doi:10.1016/j.saa.2007.08.019

    Article  CAS  Google Scholar 

  26. Adamo C, Scuseria GE, Barone V (1999) Accurate excitation energies from time-dependent density functional theory: assessing the PBE0 model. J Chem Phys 111:2889–2899. doi:10.1063/1.479571

    Article  CAS  Google Scholar 

  27. Jamorski-Jödicke CJ, Lüthi HP (2002) Time-dependent density-functional theory investigation of the formation of the charge transfer excited state for a series of aromatic donor–acceptor. Part I. J Chem Phys 117:4146–4156. doi:10.1063/1.1498817

    Article  Google Scholar 

  28. Cavillot V, Champagne B (2002) Time-dependent density functional theory simulation of UV/visible absorption spectra of zirconocene catalysts. Chem Phys Lett 354:449–457. doi:10.1016/S0009-2614(02)00161-6

    Article  CAS  Google Scholar 

  29. Ravikumar C, Joe IH, Jayakumar VS (2008) Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem Phys Lett 460:552–558. doi:10.1016/j.cplett.2008.06.047

    Article  CAS  Google Scholar 

  30. Zhang R, Du B, Sun G, Sun Y (2010) Experimental and theoretical studies on o-, m- and p-chlorobenzylideneaminoantipyrines. Spectrochim Acta A 75:1115–1124. doi:10.1016/j.saa.2009.12.067

    Article  Google Scholar 

  31. Ferrer FJA, Santoro F, Improta R (2014) The excited state behavior of cytosine in the gas phase: a TD-DFT study. Comp Theor Chem 1040–1041:186–194. doi:10.1016/j.comptc.2014.03.010

    Article  Google Scholar 

  32. Sekar N, Umape PG, Padalkar VS, Tayade RP, Ramasami P (2014) Synthesis of novel styryl derivatives from 4-chloro-2-(morpholin-4-yl)-1,3-thiazole-5-carbaldehyde, study of their photophysical properties and DFT computations. J Lumin 150:8–18. doi:10.1016/j.jlumin.2014.01.060

    Article  CAS  Google Scholar 

  33. Wang H, Shi J et al (2013) Synthesis and characteristics of novel fluorescence dyes based on chromeno[4,3,2-de][1,6]naphthyridine framework. Spectrochim Acta A 103:62–67. doi:10.1016/j.saa.2012.10.075

    Article  CAS  Google Scholar 

  34. Wang H, Chen LF et al (2014) Spectral studies of multi-branched fluorescence dyes based on triphenylpyridine core. Spectrochim Acta A 121:355–362. doi:10.1016/j.saa.2013.10.087

    Article  CAS  Google Scholar 

  35. Sun N, Li B et al (2012) A general and facile one-pot process of isothiocyanates from amines under aqueous conditions. Beilstein J Org Chem 8:61–70. doi:10.3762/bjoc.8.6

    Article  CAS  Google Scholar 

  36. Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12(1):24–33. doi:10.1186/1471-2180-12-24

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel GB et al (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

    Google Scholar 

  38. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  40. Perdew JP, Burke K, Ernzerhof M (1997) Errata: Generalized gradient approximation made simple. Phys Rev Lett 78:1396. doi:10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  41. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433. doi:10.1063/1.1688752

    Article  CAS  Google Scholar 

  42. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) Long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544. doi:10.1063/1.1383587

    Article  CAS  Google Scholar 

  43. Vydrov OA, Scuseria GE (2006) Assessment of a long range corrected hybrid functional. J Chem Phys 125:234109–9. doi:10.1063/1.2409292

    Article  Google Scholar 

  44. Vydrov OA, Scuseria GE, Perdew JP (2007) Tests of functionals for systems with fractional electron number. J Chem Phys 126:1541009–9. doi:10.1063/1.2723119

    Article  Google Scholar 

  45. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi:10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  46. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. doi:10.1039/B810189B

    Article  CAS  Google Scholar 

  47. Jędrzejewska B, Krawczyk P, Gordel M, Samoć M (2014) Synthesis and photophysical properties of two-photon chromophores containing 1H-benzimidazole residue. Dyes Pigments 111:162–175. doi:10.1016/j.dyepig.2014.06.007

    Article  Google Scholar 

  48. Krawczyk P (2015) Time-dependent density functional theory calculations of the solvatochromism of some azo sulfonamide fluorochromes. J Mol Model 21:118–136. doi:10.1007/s00894-015-2651-z

    Article  Google Scholar 

  49. Cancés MT, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032. doi:10.1063/1.474659

    Article  Google Scholar 

  50. Arivazhagan M, Muniappan P, Meenakshi R, Rajavel G (2013) PCM/TD-DFT analysis of 1-bromo-2,3-dichlorobenzene—a combined study of experimental (FT-IR and FT-Raman) and theoretical calculations. Spectrochim Acta A 105:497–508. doi:10.1016/j.saa.2012.11.033

    Article  CAS  Google Scholar 

  51. Zaleśny R, Bartkowiak W, Styrcz S, Leszczynski J (2002) Solvent effects on conformationally induced enhancement of the two-photon absorption cross section of a pyridinum-N-phenolate betaine dye. A quantum chemical study. J Phys Chem A 106:4032–4037. doi:10.1021/jp0142684

    Article  Google Scholar 

  52. Boyd RW (2003) Nonlinear optics, 2nd edn. Academic, London, p 521

    Google Scholar 

  53. Craig DP, Thirunamachandran T (1998) Molecular quantum electrodynamics: an introduction to radiation-molecule interaction Chap. 5, 1st edn. Dover, Mineola, NY

    Google Scholar 

  54. Ohta K, Antonov L, Yamada S, Kamada K (2007) Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules. J Chem Phys 127:084504–084515. doi:10.1063/1.2753490

    Article  Google Scholar 

  55. Olsen J, Jorgensen P (1985) Linear and nonlinear response functions for an exact state and for an MCSCF state. J Chem Phys 82:3235. doi:10.1063/1.448223

    Article  CAS  Google Scholar 

  56. Sałek P, Vahtras O, Guo JD, Luo Y, Helgaker T, Ågren H (2003) Calculations of two-photon absorption cross sections by means of density-functional theory. Chem Phys Lett 374:446–452. doi:10.1016/S0009-2614(03)00681-X

    Article  Google Scholar 

  57. DALTON A molecular electronic structure program. Release Dalton 2011 (2011), see http://daltonprogram.org/

  58. LSDALTON, A linear scaling molecular electronic structure program. Release Dalton 2011 (2011), see http://daltonprogram.org

  59. Sumner JP, Kopelman R (2005) Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. Analyst 130:528–533. doi:10.1039/b414189j

    Article  CAS  Google Scholar 

  60. Krasovitskii BM, Bolotin BM (1988) Organic luminescent materials. VCH, New York

    Google Scholar 

  61. Yang X et al (2003) Immunofluorescence assay and flow‐cytometry selection of bead‐bound aptamers. Nucleic Acids Res 31:54.1–54.8. doi:10.1093/nar/gng054

    Google Scholar 

  62. Nicholson WL et al (1997) An indirect immunofluorescence assay using a cell culture-derived antigen for detection of antibodies to the agent of human granulocytic ehrlichiosis. J Clin Microbiol 35:1510–1516

    CAS  Google Scholar 

  63. McCartney LJ et al (2001) Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Anal Biochem 292:216–221. doi:10.1006/abio.2001.5060

    Article  CAS  Google Scholar 

  64. Kaczmarek-Kędziera A, Ziegler-Borowska M, Kędziera D (2014) Chemia obliczeniowa w laboratorium organicznym. Wydawnictwo UMK, Toruń

    Google Scholar 

  65. Solomon RV, Jagadeesan R, Vedha SA, Venuvanalingam P (2014) A DFT/TDDFT modeling of bithiophene azo chromophores for optoelectronic applications. Dyes Pigments 100:261–268. doi:10.1016/j.dyepig.2013.09.016

    Article  CAS  Google Scholar 

  66. Tanak H, Ağar AA, Büyükgüngör O (2013) Combined experimental and DFT computational studies on (E)-1-(5-nitrothiophen-2-yl)-N-[4-(trifluoromethyl)phenyl] methanimine. J Mol Struct 1048:41–50. doi:10.1016/j.molstruc.2013.05.014

    Article  CAS  Google Scholar 

  67. Tanak H, Pawlus K, Marchewka MK, Pietraszko A (2014) Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties. Spectrochim Acta A 118:82–93. doi:10.1016/j.saa.2013.08.027

    Article  CAS  Google Scholar 

  68. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. Topics in Current Chemistry, vol 7. Springer, Berlin

    Google Scholar 

  69. Okulik N, Jubert AH (2004) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct 682:55–62. doi:10.1016/j.theochem.2004.04.069

    Article  CAS  Google Scholar 

  70. Politzer P, Laurence PR, Jayasuriya K (1985) Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect 61:191–202. doi:10.1289/ehp.8561191

    Article  CAS  Google Scholar 

  71. Jędrzejewska B, Krawczyk P, Pietrzak M, Gordel M, Matczyszyn K, Samoć M, Cysewski P (2013) Styryl dye possessing donor-π-acceptor structure—synthesis, spectroscopic and computational studies. Dyes Pigments 99:673–685. doi:10.1016/j.dyepig.2013.06.008

    Article  Google Scholar 

  72. Bartkowiak W (2006) Solvatochromism and nonlinear optical properties of donor-acceptor π-conjugated molecules. In: Papadopoulos MG, Sadlej AJ, Leszczynski J (eds) Non-linear optical properties of matter; from molecules to condensed phases. Springer, Berlin, pp 299–318

    Chapter  Google Scholar 

  73. Arul Murugan NA, Kongsted J, Rinkevicius Z, Aidas K, Mikkelsenc KV, Ågren H (2011) Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. Phys Chem Chem Phys 13:12506–12516. doi:10.1039/C1CP20611G

    Article  CAS  Google Scholar 

  74. Arul Murugan NA, Kongsted J, Rinkevicius Z, Ågren H (2011) Demystifying the solvatochromic reversal in Brooker’s merocyanine dye. Phys Chem Chem Phys 13:1290–1292. doi:10.1039/C0CP01014F

    Article  Google Scholar 

  75. Krawczyk P (2010) DFT study of linear and nonlinear optical properties of donor-acceptor substituted stilbenes, azobenzenes and benzilideneanilines. J Mol Model 16:659–668. doi:10.1007/s00894-009-0623-x

    Article  CAS  Google Scholar 

  76. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668. doi:10.1063/1.434213

    Article  CAS  Google Scholar 

  77. Silva DL, Krawczyk P, Bartkowiak W, Mendonça CR (2009) Theoretical study of one- and two-photon absorption spectra of azoaromatic compounds. J Phys Chem 131:244516–13. doi:10.1063/1.3271239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Computational Grant No. 249, PCSS (Poznan , Poland); in part by PL-Grid Infrastructure; the National Science Center of Poland (Decision No. DEC-2012/07/B/ST4/01417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Krawczyk.

Ethics declarations

Compliance with ethical standards

Submitting the article “Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: theoretical and experimental study” to Journal of Molecular Modeling does not have any potential conflicts of financial or non-financial interests.

Additional information

This paper belongs to Topical Collection MIB 2015 (Modeling Interaction in Biomolecules VII)

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 819 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk, P., Pietrzak, M., Janek, T. et al. Spectroscopic and nonlinear optical properties of new chalcone fluorescent probes for bioimaging applications: a theoretical and experimental study. J Mol Model 22, 125 (2016). https://doi.org/10.1007/s00894-016-2990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2990-4

Keywords

Navigation