Skip to main content
Log in

A Novel Multi-Functional Fluorescence Probe for the Detection of Al3+/Zn2+/Cd2+ and its Practical Applications

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10− 9 M, 4.64 × 10− 9 M, and 1.35 × 10− 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job’s plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Shamsi M, Kraatz HB (2013) Interactions of metal ions with DNA and some applications. J Inorg Organomet Polym Mater 23:4–23. https://doi.org/10.1016/S0020-1693(00)92105-4

    Article  CAS  Google Scholar 

  2. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K (2016) Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 90(1):1–37. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  3. Liu L, Sun B, Ding R, Mao Y (2020) Theoretical investigations on the Excited-State dynamics of an Al3 + fluorescence sensor. J Phys Chem A 124(52):11093–11101. https://doi.org/10.1021/acs.jpca.0c09977

    Article  CAS  PubMed  Google Scholar 

  4. Soni MG, White SM, Flamm WG, Burdock GA (2001) Safety evaluation of dietary aluminum. Regul Toxicol Pharmacol 33(1):66–79. https://doi.org/10.1006/rtph.2000.1441

    Article  CAS  PubMed  Google Scholar 

  5. Long RS, Boettcher E, Crawford D (2017) Current and future uses of aluminum in the automotive industry. JOM 69:2635–2639. https://doi.org/10.1007/s11837-017-2554-9

    Article  CAS  Google Scholar 

  6. Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ (2014) Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci 6:62. https://doi.org/10.3389/fnagi.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tomljenovic L, Shaw CA (2011) Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 105(11):1489–1499. https://doi.org/10.1016/j.jinorgbio.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  8. Rehmus A, Bigalke M, Valarezo C, Castillo JM, Wilcke W (2015) Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador. Plant Soil 388:87–97. https://doi.org/10.1007/s11104-014-2276-5

    Article  CAS  Google Scholar 

  9. Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252. https://doi.org/10.1016/S0074-7696(07)64005-4

    Article  CAS  PubMed  Google Scholar 

  10. Nayak P (2002) Aluminum: impacts and disease. Environ Res 89:101–115. https://doi.org/10.1006/enrs.2002.4352

    Article  CAS  PubMed  Google Scholar 

  11. Haase H, Rink L (2009) The immune system and the impact of zinc during aging. Immun Ageing: I & a 6:9. https://doi.org/10.1186/1742-4933-6-9

    Article  CAS  Google Scholar 

  12. Yagi T, Asakawa A, Ueda H, Ikeda S, Miyawaki S, Inui A (2013) The role of zinc in the treatment of taste disorders. Recent Pat Food Nutr Agric 5(1):44–51. https://doi.org/10.2174/2212798411305010007

    Article  CAS  PubMed  Google Scholar 

  13. Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28:357–363. https://doi.org/10.1016/j.jtemb.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. https://doi.org/10.1186/1745-6673-1-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao XM, Yao LA, Ma QL, Zhou GJ, Wang L, Fang QL, Xu ZC (2018) Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: implication on water quality management after pollution accident. Chemosphere 194:107–116. https://doi.org/10.1016/j.chemosphere.2017.11.127

    Article  CAS  PubMed  Google Scholar 

  16. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034. https://doi.org/10.1155/2013/898034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Da L, Yang L, Chu S, Yang F, Yu S, Jiang C (2020) Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J Hazard Mater 392:122506. https://doi.org/10.1016/j.jhazmat.2020.122506

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Lu W, Bai C, Xu C, Ye M, Zhu Y, Yao L (2023) Cadmium, arsenic, and mineral nutrients in rice and potential risks for human health in South China. Environ Sci Pollut Res Int 30(31):76842–76852. https://doi.org/10.1007/s11356-023-27857-7

    Article  CAS  PubMed  Google Scholar 

  19. Samanta S, Datta BK, Boral M, Nandan A, Das G (2016) A multi-responsive turn-on flurogenic probe to sense zn(2+), cd(2+) and pb(2+): left-right-center emission signal swing. Analyst 141(14):4388–4393. https://doi.org/10.1039/C6AN00657D

    Article  CAS  PubMed  Google Scholar 

  20. Kumari N, Singh S, Baral M, Kanungo BK (2013) Schiff bases: a versatile fluorescence probe in sensing cations. J Fluoresc 33(3):859–893. https://doi.org/10.1007/s10895-022-03135-6

    Article  CAS  Google Scholar 

  21. Wang S, Zhang XF, Wang HS, Liu J, Shen SL, Cao XQ (2023) A highly sensitive NIR fluorescence probe for hypoxia imaging in cells and ulcerative colitis. Talanta 252:123834. https://doi.org/10.1016/j.talanta.2022.123834

    Article  CAS  PubMed  Google Scholar 

  22. Xue XL, Wang Y, Chen S, Wang KP, Niu SY, Zong QS, Jiang Y, Hu ZQ (2023) Monitoring intracellular pH using a hemicyanine-based ratiometric fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 284:121778. https://doi.org/10.1016/j.saa.2022.121778

    Article  CAS  PubMed  Google Scholar 

  23. Zhao SL, Chen FS, Zhang J, Ren SB, Liang HD, Li SS (2015) On-line flame AAS determination of traces cd(II) and pb(II) in water samples using thiol-functionalized SBA-15 as solid phase extractant. J Ind Eng Chem 27:362–367. https://doi.org/10.1016/j.jiec.2015.01.015

    Article  CAS  Google Scholar 

  24. Li Y, Peng G, He Q, Zhu H, M S (2015) Al-Hamadani, Dispersive liquid-liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters. Spectrochim Acta A 140:156–161. https://doi.org/10.1016/j.saa.2014.12.091

    Article  CAS  Google Scholar 

  25. Ying LY, Jiang HL, Zhou SC, Zhou Y (2011) Ionic liquid as a complexation and extraction medium combined with high-performance liquid chromatography in the evaluation of chromium(VI) and chromium(III) speciation in wastewater samples. Microchem J 98:200–203. https://doi.org/10.1016/j.microc.2011.01.010

    Article  CAS  Google Scholar 

  26. Wang Y, Wang ZG, Song XQ, Chen Q, Tian H, Xie CZ, Li QZ, Xu JY (2019) A dual functional turn-on non-toxic chemosensor for highly selective and sensitive visual detection of Mg2+ and Zn2+: the solvent-controlled recognition effect and bio-imaging application. Analyst 144(13):4024–4032. https://doi.org/10.1039/C9AN00583H

    Article  CAS  PubMed  Google Scholar 

  27. Lee KS, Kim HJ, Kim GH, Shin I, Hong JI (2008) Fluorescent chemodosimeter for selective detection of cyanide in water. Org Lett 10(1):49–51. https://doi.org/10.1021/ol7025763

    Article  CAS  PubMed  Google Scholar 

  28. Yadav P, Gond S, Shekher A, Gupta SC, Singh UP, Singh VP A multifunctional basic pH indicator probe for distinguishable detection of Co2+, Cu2+ and Zn2+ with its utility in mitotracking and monitoring cytoplasmic viscosity in apoptotic cells. Dalton Trans 51(17):6927–6935. https://doi.org/10.1039/D2DT00286H

  29. Yan XJ, Gao YY, Liu HB, Qiao X, Xie CZ, Li QZ, Gao WZ, Sun HB, Xu JY (2021) A novel double target fluorescence probe for Al3+/Mg2+ detection with distinctively different responses and its applications in cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 261:120067. https://doi.org/10.1016/j.saa.2021.120067

    Article  CAS  PubMed  Google Scholar 

  30. Bag R, Sikdar Y, Sahu S, Islam M, Mandal S, Goswami S (2022) Benzimidazole-acid hydrazide Schiff–Mannich combo ligands enable the nano-molar detection of Zn2+ in semi-aqueous media, HuH-7 cells, and plants via a fluorescence turn-on mode. New J Chem 46:16161–16171. https://doi.org/10.1039/D2NJ02875A

    Article  CAS  Google Scholar 

  31. Meier P, Broghammer F, Latendorf K, Rauhut G, Peters R (2012) Cooperative Al(salen)-pyridinium catalysts for the asymmetric synthesis of trans-configured β-lactones by [2 + 2]-cyclocondensation of acylbromides and aldehydes: investigation of pyridinium substituent effects. Molecules 17:7121–7150. https://doi.org/10.3390/molecules17067121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou W, Zhang W, Peng Y, Jiang ZH, Zhang L, Du Z (2020) Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase II catalytic inhibitors. Molecules 25:7121–7150. https://doi.org/10.3390/molecules17067121

    Article  CAS  Google Scholar 

  33. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Fox D (2009) Gaussian 09 (Revision A02), Gaussian Inc. Wallingford CT

  34. Behera N, Manivannan V (2018) A probe for multi detection of Al3+, Zn2+ and Cd2+ ions via turn-on fluorescence responses. J Photochem 353:77–85. https://doi.org/10.1016/j.jphotochem.2017.10.055

    Article  CAS  Google Scholar 

  35. Sun JQ, Ye BF, Xia GM, Wang HM (2017) A multi-responsive squaraine-based turn on fluorescent chemosensor for highly sensitive detection of Al3+, Zn2+ and Cd2+ in aqueous media and its biological application. Sens Actuators B Chem 249:386–394. https://doi.org/10.1016/j.snb.2017.03.134

    Article  CAS  Google Scholar 

  36. Peng SX, Lv JF, Liu G, Fan CB, Pu SZ (2020) A photochromic diarylethene-functionalized fluorescent probe for Cd2+ and Zn2+ detections. Tetrahedron 76:131618. https://doi.org/10.1016/j.tet.2020.131618

    Article  CAS  Google Scholar 

  37. Quan C, Liu JY, Sun W, Cheng XJ (2020) Highly sensitive and selective fluorescence chemosensors containing phenanthroline moieties for detection of Zn2+ and Cd2+ ions. Chem Pap 74:485–497. https://doi.org/10.1007/s11696-019-00893-9

    Article  CAS  Google Scholar 

  38. Lu XM, Wu MY, Wang SW, Qin JC, Li PY (2022) An AIE/PET-based fluorescent probe for Zn2+/Al3+ detection and its application in fluorescence-assisted diagnosis for prostate cancer. Dyes Pigm 203:110372. https://doi.org/10.1016/j.dyepig.2022.110372

    Article  CAS  Google Scholar 

  39. Kar C, Samanta S, Goswami S, Ramesh A, Das G (2015) A single probe to sense Al(iii) colorimetrically and cd(ii) by turn-on fluorescence in physiological conditions and live cells, corroborated by X-ray crystallographic and theoretical studies. Dalton Trans 44:4123–4132. https://doi.org/10.1039/C4DT01433B

    Article  CAS  PubMed  Google Scholar 

  40. Sun XJ, Liu TT, Li NN, Zeng S, Xing ZY (2020) A novel dual-function probe for recognition of Zn2+ and Al3+ and its application in real samples. Spectrochim 228:117786. https://doi.org/10.1016/j.saa.2019.117786

    Article  CAS  Google Scholar 

  41. Quan C, Liu J, Sun W, Cheng X (2020) Highly sensitive and selective fluorescence chemosensors containing phenanthroline moieties for detection of Zn2+ and Cd2+ ions. Chem Pap 74:485–497. https://doi.org/10.1007/s11696-019-00893-9

    Article  CAS  Google Scholar 

  42. Wang Y, Mao PD, Wu WN, Mao XJ, Fan YC, Zhao XL, Xu ZQ, Xu ZH (2018) New pyrrole-based single-molecule multianalyte sensor for Cu2+, Zn2+, and Hg2+ and its AIE activity. Sens Actuators B-Chem 255:3085–3092. https://doi.org/10.1016/j.snb.2017.09.133

    Article  CAS  Google Scholar 

  43. Selvan GT, Kumaresan M, Sivaraj R, Enoch IVMV, Selvakumar PM (2016) Isomeric 4-aminoantipyrine derivatives as fluorescent chemosensors of Al3+ ions and their molecular logic behaviour. Sens Actuat B Chem 229:181–189. https://doi.org/10.1016/j.snb.2016.01.097

    Article  CAS  Google Scholar 

  44. Wu QQ, Fang AJ, Li HT, Zhang YY, Yao SZ (2016) Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum. Biosens Bioelectron 77:957–962. https://doi.org/10.1016/j.bios.2015.10.084

    Article  CAS  PubMed  Google Scholar 

  45. Yuan HJ, Feng SY, Wen KK, Zhu QL, An BB, Guo XG, Zhang JL (2017) A quantum-chemical insight into the tunable fluorescence color and distinct photoisomerization mechanisms between a novel ESIPT fluorophore and its protonated form. Spectrochim Acta A 183:123–130. https://doi.org/10.1016/j.saa.2017.04.025

    Article  CAS  Google Scholar 

  46. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single Schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sens Actuat B Chem 194:343–352. https://doi.org/10.1016/j.snb.2013.12.114

    Article  CAS  Google Scholar 

  47. Wang Y, Ma ZY, Zhang DL, Deng JL, Chen X, Xie CZ, Qiao X, Li QZ, Xu JY Highly selective and sensitive turn-on fluorescent sensor for detection of Al3+ based on quinoline-base Schiff base. Spectrochim Acta A Mol Biomol Spectrosc 195:157–164. https://doi.org/10.1016/j.saa.2018.01.049

  48. Lin XD, Peng B, Li SY, Shao J, Li QZ, Xie CZ, Xu JY (2016) Novel zn(II)-thiazolone-based solid fluorescent chemosensors: naked-eye detection for acid/base and toluene. RSC Adv 6:52310–52317. https://doi.org/10.1039/c6ra06412d

    Article  CAS  Google Scholar 

  49. Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL (2022) Benzimidazole hybrids as anticancer drugs: an updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019–2021). Arch Pharm (Weinheim) 355(6):e2200051. https://doi.org/10.1002/ardp.202200051

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (21977080) and Applied Basic Research Multi-investment Foundation of Tianjin (21JCYBJC01350).

Author information

Authors and Affiliations

Authors

Contributions

J.F.: Conceptualization, Methodology, Investigation, Writing -original draft. X.L.: Data curation, Software, Visualization. P.S.: Validation, Investigation, Resources. H.S.: Writing - Review & Editing, Validation. Y.S.: Formal Analysis, Investigation, Q.L.: Investigation. H.L.: Software. C.X.: Methodology, Supervision, Writing - original draft, Funding acquisition. J.X.: Conceptualization, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Cheng-Zhi Xie or Jing-Yuan Xu.

Ethics declarations

Ethical Approval and Consent to Participate

This article does not contain any studies involving animals performed by any authors.

Consent to Publish

All authors mentioned in the manuscript have consented to submission and publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Liu, XM., Sun, P. et al. A Novel Multi-Functional Fluorescence Probe for the Detection of Al3+/Zn2+/Cd2+ and its Practical Applications. J Fluoresc (2024). https://doi.org/10.1007/s10895-024-03589-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10895-024-03589-w

Keywords

Navigation