Skip to main content
Log in

4-(4-Chloro-2-oxo-3(1H-phenanthro[9,10-d] imidazol-2-yl)-2H-chromen-6-yl)benzaldehyde as a fluorescent probe for medical imaging: linear and nonlinear optical properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study presents the full theoretical optical and biological characteristics of a new fluorescent probe based on the phenanthroimidazole backbone (PB5). The aldehyde group was selected as the active group to bind to the protein during conjugation. The new fluorescent probe is based on the phenanthroimidazole backbone; however, unlike previously presented works, as the chromophore part, it contains the first introduction of the 4-chloro-2H-chromen-2-one part. In order to achieve the best cognitive aspect, the study included not only the dye itself but also the concanavalin A conjugate. The linear and non-linear optical properties and biological activities described in this study clearly indicate that the presented dye is a promising material as a fluorescent probe in medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GP:

Gas phase

MCH:

MethylCycloHexane

1,4-Dx:

1,4-Dioxane

Et2O:

DiethylEther

EtAc:

EthylEthanoate

THF:

TetraHydroFuran

MeAc:

Acetone

MeCN:

Acetonitrile

DMF:

N,N-DiMethylFormamide

DMSO:

DiMethylSulfoxide

References

  1. P. Mitra, M. Banerjee, S. Biswas and S. Basu, J. Photochem. Photobiol., B, 2013, 121, 46–56, DOI: 10.1016/j. jphotobiol.2013.02.010.

    CAS  Google Scholar 

  2. N. Romanov, C. Anastasi and X. Liu, Cyanine dyes for labeling molecular ligands with improved fluorescence intensity and photostability, WO2013041117A1, 2013.

  3. M. Fernández-Suárez and A. Y. Ting, Nat. Rev. Mol. Cell Biol., 2008, 9, 929–943, DOI: 10.1038/nrm2531.

    PubMed  Google Scholar 

  4. C. Basford, N. Forraz and C. McGuckin, Nat. Protoc., 2010, 5(7), 1337–1346, DOI: 10.1038/nprot.2010.88.

    CAS  PubMed  Google Scholar 

  5. R. Weissleder and V. Pittet, Nature, 2008, 452, 580–589, DOI: 10.1038/nature06917.

  6. L. E. Jennings and N. J. Long, Chem. Commun., 2009, 24, 3511–3524, DOI: 10.1039/B821903F.

    Google Scholar 

  7. J.-M. Liu, J.-T. Chen and X.-P. Yan, Anal. Chem., 2013, 85, 3238–3245, DOI: 10.1021/ac303603f.

    CAS  PubMed  Google Scholar 

  8. H. Guo, N. M. Idris and Y. Zhang, Langmuir, 2011, 27, 2854–2860, DOI: 10.1021/la102872v.

    CAS  PubMed  Google Scholar 

  9. Z. Li, Y. Zhang and S. Jiang, Adv. Mater., 2008, 20, 4765–4769, DOI: 10.1002/adma.200801056.

    CAS  Google Scholar 

  10. F. Rijke, H. Zijlmans, S. Li, V. Tim, A. K. Raap and R. S. Niedbala, Nat. Biotechnol., 2001, 19, 273–276, DOI: 10.1038/85734.

    Google Scholar 

  11. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon and T. Hyeon, Angew. Chem., Int. Ed., 2008, 47(44), 8438–8441, DOI: 10.1002/anie.200802469.

  12. D. Janczewski, Y. Zhang, G. K. Das, D. K. Yi, P. Padmanabhan, K. K. Bhakoo, T. T. Tan and S. T. Selvan, Microsc. Res. Tech., 2011, 74, 563–576, DOI: 10.1002/jemt.20912.

    CAS  PubMed  Google Scholar 

  13. M. Tsuji, S. Ueda, T. Hirayama, K. Okuda, Y. Sakaguchi, A. Isono and H. Nagasawa, Org. Biomol. Chem., 2013, 11(18), 3030–3037, DOI: 10.1039/C3OB27445D.

    CAS  PubMed  Google Scholar 

  14. F. Auzel, Chem. Rev., 2004, 104(1), 139–174, DOI: 10.1021/cr020357g.

    CAS  PubMed  Google Scholar 

  15. M. Brinkley, Bioconjugate Chem., 1992, 3(1), 2–13, DOI: 10.1021/bc00013a001.

    CAS  Google Scholar 

  16. D. Zhang, J. Tang, Ch. Cao, Z. Ma, Y. Wang, Y. Ma, H. Wang, H. Yin, J. Liu and B. Jia, J. Lumin., 2019, 205, 299–303, DOI: 10.1016/j.jlumin.2018.09.037.

    CAS  Google Scholar 

  17. Q. Li, J. Nie, Y. Shan, Y. Li, J. Du, L. Zhu, Q. Yang and F. Bai, Anal. Biochem., 2020, 15, 113539, DOI: 10.1016/j. ab.2019.113539.

  18. G. Yin, Y. Gan, T. Yu, T. Niu, P. Yin, H. Chen, Y. Zhang, H. Li and S. Yao, Talanta, 2019, 191, 428–434, DOI: 10.1016/j.talanta.2018.08.059.

  19. M. Xiaoyu, Ch. Shanyong, Y. Hong, G. Youwei, L. Junjun, Y. Xingwu and Z. Zhenghao, Nanoscale Res. Lett., 2019, 14(1), 318, DOI: 10.1186/s11671–019–3149-x.

  20. Q. Gao, Y. Jiao, C. He and C. Duan, Molecules, 2019, 12, 2268.

  21. Y. Ning, J. Cui, Y. Lu, X. Wang, Ch. Xiao, S. Wu, J. Li and Y. Zhang, Sens. Actuators, B, 2018, 269, 322–330, DOI: 10.1016/j.snb.2018.04.156.

  22. W. Xiaomei, L. Yong, H. Xu, L. Dan and W. Yuhong, Aust. J. Chem., 2018, 71, 971–977, DOI: 10.1071/CH18207; K. Bo-Yeon, P. Anup, Ch. Sik Cho and K. Hong-Seok, Bull. Korean Chem. Soc., 2019, 40, 163–168, DOI: 10.1002/bkcs.11663.

    Google Scholar 

  23. Z. Lu, Y. Lu, X. Sun, C. Fan, Z. Long and L. Gao, Bioorg. Chem., 2019, 92, 103215. PMID: 31541803.

  24. P. Siqi, Z. Tianya, G. Tiantong, S. Dehua, M. Defen, L. Haoran and G. Dongcai, New J. Chem., 2018, 42, 5185–5192.

  25. G. Yunyan, Y. Na, O. Zhize, L. Zhiyuan, M. Tuotuo, J. Hongdan, X. Wenli, Y. Guoqiang and L. Yi, Sens. Actuators, B, 2018, 267, 136–144, DOI: 10.1016/j. snb.2018.04.017.

  26. K. Shantaram, B. Sulochana and S. Nagaiyan, Dyes Pigm., 2018, 159, 209–222, DOI: 10.1016/j.dyepig.2018.06.020.

    Google Scholar 

  27. U. Uçucu, N. G. Karaburun and I. Işikdağ, Farmaco, 2020, 56, 285–290, DOI: 10.1016/S0014–827X(01)01076-X.

  28. A. Yeşilada, S. Koyunoğlu, N. Saygili, E. Kupeli, E. Yeşilada, E. Bedir and I. Khanc, Arch. Pharm. Pharm. Med. Chem., 2004, 337, 96–104, DOI: 10.1002/ ardp.200200752.

    Google Scholar 

  29. L. Quattara, M. Debaert and R. Cavier, Farmaco (sci.), 1987, 42(6), 449–456, PMID:2904887.

  30. S. Dutta, Acta Pharm., 2010, 60(2), 229–235, DOI: 10.2478/v10007-010-0011-1.

    CAS  PubMed  Google Scholar 

  31. A. K. Sengupta and T. Bhattacharya, J. Indian Chem. Soc., 1983, 60, 373–376, DOI: 10.1002/chin.198349246.

    CAS  Google Scholar 

  32. L. Navidpour, H. Shadnia, H. Shafaroodi, M. Amini, R. Dehpour and A. Shafiee, Bioorg. Med. Chem., 2007, 15, 1976–1982, DOI: 10.1016/j.bmc.2006.12.041.

    CAS  PubMed  Google Scholar 

  33. G. Fluoret, J. Med. Chem., 1970, 13, 843–845, DOI: 10.1021/jm00299a011.

  34. R. N. Brogden, R. C. Heel, T. M. Speight and G. S. Avery, Drugs, 1978, 16(5), 387–417, PMID: 363399.

  35. R. W. Brimblecombe, W. A. M. Duncan, G. J. Durant, J. C. Emmett, C. R. Ganellin, M. E. Parsons and J. W. Black, J. Int. Med. Res., 1975, 3(2), 86–92, DOI: 10.1111/j.1476-5381.2010.00854.x.

  36. W. Hunkeler, H. Möhler, L. Pieri, P. Polc, E. P. Bonetti, R. Cumin, R. Schaffner and W. Haefely, Nature, 1981, 290, 514–516, DOI: 10.1038/290514a0.

  37. X. Cheng, H. Jia, J. Feng, J. Qin and Z. Li, Sens. Actuators, B, 2013, 184, 274–280, DOI: 10.1016/j.snb.2013.04.070.

  38. W. Lin, L. Long, L. Yuan, Z. Cao, B. Chen and W. Tan, Org. Lett., 2008, 10(24), 5577–5580, DOI: 10.1021/ol802436j.

    CAS  PubMed  Google Scholar 

  39. Jawaharmal, H. S. Lamba, S. Narwal, G. Singh, D. R. Saini, A. Kaur and S. Narwal, Indo Global J. Pharm. Sci., 2012, 2(2), 147–156. ISSN 2249-1023.

  40. L. Long, L. Zhou, L. Wang, S. Meng, A. Gong, F. Du and C. Zhang, Anal. Methods, 2013, 5, 6605–6610, DOI: 10.1039/C3AY41475B.

  41. M.-S. Tsai, Y.-C. Hsu, J. T. Lin, H.-C. Chen and C.-P. Hsu, J. Phys. Chem. C, 2007, 111(50), 18785–18793, DOI: 10.1021/jp075653h.

  42. J. Liu, J. Qiu, M. Wang, L. Wang, L. Su, J. Gao, Q. Gua, S. L. Huang, L. Q. Gu, Z. S. Huang and D. Li, Biochim. Biophys. Acta, 2014, 1840(9), 2886–2903, DOI: 10.1016/j.bbagen.2014.05.005.

  43. P. Krawczyk, B. Jędrzejewska, M. Pietrzak and T. Janek, J. Photochem. Photobiol., B, 2016, 164, 112–122, DOI: 10.1016/j.jphotobiol.2016.07.044.

  44. P. Krawczyk, B. Jędrzejewska, M. Pietrzak and T. Janek, J. Photochem. Photobiol., B, 2017, 166, 74–85, DOI: 10.1016/j.jphotobiol.2016.11.008.

  45. P. Krawczyk, T. Wybranowski, Ł. Kaźmierski, I. Hołyńska-Iwan, M. Bratkowska, P. Cysewski and B. Jędrzejewska, Spectrochim. Acta, Part A, 228, 117757, DOI: 10.1016/j. saa.2019.117757.

  46. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–B871, DOI: 10.1103/physrev.136.b864.

  47. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133–A1138, DOI: 10.1103/physrev.140.a113.

  48. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford Univ. Press, Oxford, 1989.

  49. The Challenge of d and f Electrons, ed. D. R. Salahub and M. C. Zerner, ACS, Washington DC, 1989.

  50. C. Sosa and C. Lee, J. Chem. Phys., 1993, 98, 8004–8011, DOI: 10.1063/1.464554.

    CAS  Google Scholar 

  51. G. E. Scuseria, J. Chem. Phys., 1992, 97, 7528–7530, DOI: 10.1063/1.463977.

    CAS  Google Scholar 

  52. Density Functional Methods in Chemistry, ed. J. K. Labanowski and J. W. Andzelm, Springer-Verlag, New York, 1991.

  53. M. Kurt, T. R. Sertbakan and M. Ozduran, Spectrochim. Acta, Part A, 2008, 70(3), 664–673, DOI: 10.1016/j. saa.2007.08.019.

  54. C. Adamo, G. E. Scuseria and V. Barone, J. Chem. Phys., 1999, 111, 2889–2899, DOI: 10.1063/1.479571.

    CAS  Google Scholar 

  55. C. J. Jamorski-Jödicke and H. P. Lüthi, J. Chem. Phys., 2002, 117, 4146–4156, DOI: 10.1063/1.1498817.

    Google Scholar 

  56. V. Cavillot and B. Champagne, Chem. Phys. Lett., 2002, 354, 449–457, DOI: 10.1016/S0009-2614(02)00161-6.

    CAS  Google Scholar 

  57. C. Ravikumar, I. H. Joe and V. S. Jayakumar, Chem. Phys. Lett., 2008, 460, 552–558, DOI: 10.1016/j. cplett.2008.06.047.

    CAS  Google Scholar 

  58. R. Zhang, B. Du, G. Sun and Y. Sun, Spectrochim. Acta, Part A, 2010, 75, 1115–1124, DOI: 10.1016/j.saa.2009.12.067.

  59. F. J. A. Ferrer, F. Santoro and R. Improta, Comput. Theor. Chem., 2014, 10401041, 186–194, DOI: 10.1016/j. comptc.2014.03.010.

  60. N. Sekar, P. G. Umape, V. S. Padalkar, R. P. Tayade and P. Ramasami, J. Lumin., 2014, 150, 8–18, DOI: 10.1016/j. jlumin.2014.01.060.

    CAS  Google Scholar 

  61. H. Wang, J. Shi, et al., Spectrochim. Acta, Part A, 2013, 103, 62–67, DOI: 10.1016/j.saa.2012.10.075.

    CAS  Google Scholar 

  62. H. Wang, L. F. Chen, et al., Spectrochim. Acta, Part A, 2014, 121, 355–362, DOI: 10.1016/j.saa.2013.10.087.

  63. P. Krawczyk, P. Czeleń and P. Cysewski, Org. Biomol. Chem., 2018, 16, 3788–3800, DOI: 10.1039/c8ob00729b.

    CAS  PubMed  Google Scholar 

  64. M. J. Frisch, G. W. Trucks, G. B. Schlegel, et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

  65. C. Adamo, G. E. Scuseria and V. Barone, J. Chem. Phys., 1999, 111, 2889–2899, DOI: 10.1063/1.479571.

    CAS  Google Scholar 

  66. C. Guido and S. Caprasecca, 2016, https://www1.dcci.unipi.it/molecolab/tools/white-papers/pisalr/, DOI: 10.13140/RG.2.1.1903.7845.

  67. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868, DOI: 10.1103/PhysRevLett.77.3865.

    CAS  PubMed  Google Scholar 

  68. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1997, 78, 1396, DOI: 10.1103/PhysRevLett.78.1396.

  69. T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51–57, DOI: 10.1016/j.cplett.2004.06.011.

    CAS  Google Scholar 

  70. J. Heyd and G. E. Scuseria, J. Chem. Phys., 2004, 120, 7274, DOI: 10.1063/1.1668634.

  71. J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2006, 124, 219906, DOI: 10.1063/1.2204597.

  72. C. Adamo and V. Barone, J. Chem. Phys., 1998, 108, 664–675, DOI: 10.1063/1.475428.

    CAS  Google Scholar 

  73. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620, DOI: 10.1039/B810189B.

    CAS  PubMed  Google Scholar 

  74. H. Iikura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys., 2001, 115, 3540–3544, DOI: 10.1063/1.1383587.

  75. O. A. Vydrov and G. E. Scuseria, J. Chem. Phys., 2006, 125, 234109–234109, DOI: 10.1063/1.2409292.

    PubMed  Google Scholar 

  76. O. A. Vydrov, G. E. Scuseria and J. P. Perdew, J. Chem. Phys., 2007, 126, 1541009–1541009, DOI: 10.1063/1.2723119.

  77. N. Minezawa, Chem. Phys. Lett., 2014, 608, 140–144, DOI: j.cplett.2014.05.104.

    CAS  Google Scholar 

  78. G. S. Ming Tong, K. T. Chan, X. Chang and Ch.-M. Che, Chem. Sci., 2015, 6, 3026–3037, DOI: 10.1039/c4sc03697b.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. C. Guido and S. Caprasecca, https://www1.dcci.unipi.it/molecolab/tools/white-papers/pisalr/, DOI: 10.13140/RG.2.1.1903.7845.

  80. L. V. Slipchenko, J. Phys. Chem. A, 2010, 114, 8824–8830, DOI: 10.1021/jp101797a.

  81. K. Sneskov, T. Schwabe, O. Christiansen and J. Kongsted, Phys. Chem. Chem. Phys., 2011, 13, 18551–18560, DOI: 10.1039/C1CP22067E.

  82. M. Caricato, J. Chem. Phys., 2013, 139, 044116, DOI: 10.1063/1.4816482.

  83. T. Le Bahers, C. Adamo and I. Ciofini, J. Chem. Theory Comput., 2011, 7, 2498–2506, DOI: 10.1021/ct200308m.

    PubMed  Google Scholar 

  84. M. T. Cancés, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032–3041, DOI: 10.1063/1.474659.

    Google Scholar 

  85. M. Arivazhagan, P. Muniappan, R. Meenakshi and G. Rajavel, Spectrochim. Acta, Part A, 2013, 105, 497–508, DOI: 10.1016/j.saa.2012.11.033.

  86. R. W. Boyd, in Nonlinear Optics, Academic, London, 2nd edn, 2003, p. 521.

  87. D. P. Craig and T. Thirunamachandran, Molecular quantum electrodynamics: an introduction to radiation-molecule interaction, Dover Publications, Inc, Mineola, New York, 1st edn, 1998, ch. 5.

  88. K. Ohta, L. Antonov, S. Yamada and K. Kamada, J. Chem. Phys., 2007, 127, 084504–084515, DOI: 10.1063/1.2753490.

    PubMed  Google Scholar 

  89. R. Zaleśny, W. Bartkowiak, S. Styrcz and J. Leszczynski, J. Phys. Chem. A, 2002, 106, 4032–4037, DOI: 10.1021/jp0142684.

  90. J. Olsen and P. Jorgensen, J. Chem. Phys., 1985, 82, 3235, DOI: 10.1063/1.448223.

  91. P. Sałek, O. Vahtras, J. D. Guo, Y. Luo, T. Helgaker and H. Ågren, Chem. Phys. Lett., 2003, 374, 446–452, DOI: 10.1016/S0009-2614(03)00681-X.

    Google Scholar 

  92. DALTON A molecular electronic structure program. Release Dalton 2011, 2011, see http://daltonprogram.org/.

  93. LSDALTON, A linear scaling molecular electronic structure program. Release Dalton 2011, 2011, see http://daltonpro-gram.org.

  94. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell and A. J. Olson, J. Comput. Chem., 2009, 30, 2785–2791, DOI: 10.1002/jcc.21256.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. S. Cosconati, S. Forli, A. L. Perryman, R. Harris, D. S. Goodsell and A. J. Olson, Expert Opin. Drug Discovery, 2010, 5, 597–607, DOI: 10.1517/17460441.2010.484460.

  96. S. Forli and A. J. Olson, J. Med. Chem., 2012, 55, 623–638, DOI: 10.1021/jm2005145.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. C. S. Panjikar, P. A. Tucker and M. S. Weiss, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2005, 61, 1263–1272, DOI: 10.2210/pdb2a7e/pdb.

    Google Scholar 

  98. O. Trott and A. J. Olson, J. Comput. Chem., 2010, 31, 455–461, DOI: 10.1002/jcc.21334.

  99. V. Potemkin and M. Grishina, Drug Discovery Today, 2008, 13(21–22), 952–959, DOI: 10.1016/j.drudis.2008.07.006.

  100. V. Potemkin and M. Grishina, J. Comput.-Aided Mol. Des., 2008, 22(6–7), 489–505, DOI: 10.1007/s10822-008-9203-x.

  101. V. Potemkin, A. A. Pogrebnoy and M. A. Grishina, J. Chem. Inf. Model., 2009, 49(6), 1389–1406, DOI: 10.1021/ci800405n.

    CAS  PubMed  Google Scholar 

  102. G. Snatzke, Angew. Chem., Int. Ed. Engl., 1979, 18(5), 363–377, DOI: 10.1002/anie.197903631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemystaw Krawczyk.

Additional information

Electronic supplementary information (ESI) available: Molecular structure and spectroscopic properties for investigated compound. See DOI: 10.1039/c9pp00478e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krawczyk, P. 4-(4-Chloro-2-oxo-3(1H-phenanthro[9,10-d] imidazol-2-yl)-2H-chromen-6-yl)benzaldehyde as a fluorescent probe for medical imaging: linear and nonlinear optical properties. Photochem Photobiol Sci 19, 473–484 (2020). https://doi.org/10.1039/c9pp00478e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00478e

Navigation