Skip to main content
Log in

Theoretical study on rate constants for the reactions of CF3CH2NH2 (TFEA) with the hydroxyl radical at 298 K and atmospheric pressure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical investigations are carried out on reaction mechanism of the reactions of CF3CH2NH2 (TFEA) with the OH radical by means of ab initio and DFT methods. The electronic structure information on the potential energy surface for each reaction is obtained at MPWB1K/6-31+G(d,p) level and energetic information is further refined by calculating the energy of the species with a Gaussian-2 method, G2(MP2). The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation. Our calculation indicates that the H abstraction from –NH2 group is the dominant reaction channel because of lower energy barrier. The rate constants of the reaction calculated using canonical transition state theory (CTST) utilizing the ab initio data. The agreement between the theoretical and experimental rate constants is good at the measured temperature. From the comparison with CH3CH2NH2, it is shown that the fluorine substution decreases the reactivity of the C-H bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Grönberg L, Lövkvist P, Jönsson J (1992) Chromatographia 33:77–82

    Article  Google Scholar 

  2. Gibb SW, Mantoura RFC, Liss PS (1999) Global Biogeochem Cycles 13:161–178

    Article  CAS  Google Scholar 

  3. Müller C, Iinuma Y, Karstensen J, Van Pinxteren D, Lehmann S, Gnauk T, Herrmann H (2009) Atmos Chem Phys 9:9587–9597

    Article  Google Scholar 

  4. Pratt K, Hatch L, Prather K (2009) Environ Sci Technol 43:5276–5281

    Article  CAS  Google Scholar 

  5. Angelino S, Suess D, Prather K (2001) Environ Sci Technol 35:3130–3138

    Article  CAS  Google Scholar 

  6. Silva PJ, Erupe ME, Price D, Elias J, Malloy QGJ, Li Q, Warren B, Cocker DR (2008) Environ Sci Technol 42:4689–4896

    Article  CAS  Google Scholar 

  7. Malloy QJ, Warren B, Li Q, Cocker DR, Erupe ME, Silva PJ (2009) Atmos Chem Phys 9:2051–2060

    Article  CAS  Google Scholar 

  8. Zahardis J, Geddes S, Petrucci GA (2008) Atmos Chem Phys 8:1181–1194

    Article  CAS  Google Scholar 

  9. Atkinson R, Perry RA, Pitts JN (1977) J Chem Phys 66:1578–1581

    Article  CAS  Google Scholar 

  10. Smith JN, Barsanti KC, Friedli HR, Ehn M, Kulmala M, Collins DR, Scheckman JH, Willians BJ, McMurry PH (2010) Proc Natl Acad Sci USA 107:6634–6639

    Article  CAS  Google Scholar 

  11. Nadykto AB, Yu F, Jakovleva MV, Herb J, Xu Y (2011) Entropy 13:554–569

    Article  CAS  Google Scholar 

  12. Loukonen V, Kurten T, Ortega I, Vehkamäki H, Padua A, Sellegri K, Kulmala M (2010) Atmos Chem Phys 10:4961–4974

    Article  CAS  Google Scholar 

  13. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Atmos Chem Phys 5:1053–1123

    Article  CAS  Google Scholar 

  14. Pope CA III, Ezzati M, Dockery DW (2009) N Engl J Med 360:376–386

    Article  CAS  Google Scholar 

  15. Cadle SH, Mulawa PA (1980) Environ Sci Technol 14:718–723

    Article  CAS  Google Scholar 

  16. Nielsen CJ, Herrmannb H, Wellerb C (2012) Chem Soc Rev 41:6684–6704

    Article  CAS  Google Scholar 

  17. Fostaas B, Gangstad A, Nenseter B, Pedersen S, Sjoevoll M, Soerensen AL (2011) Energ Procedia 4:1566–1573

    Article  CAS  Google Scholar 

  18. Schade GW, Crutzen PJ (1995) J Atmos Chem 22:319–346

    Article  CAS  Google Scholar 

  19. Facchini MC, Decesari S, Rinaldi M, Carbone C, Finessi E, Mircea M, Fuzzi S, Moretti F, Tagliavini E, Ceburnis D, O’Dowd CD (2008) Environ Sci Technol 42:9116–9121

    Article  CAS  Google Scholar 

  20. Leach J, Blanch A, Bianchi AC (1999) Atmos Environ 33:4309–4325

    Article  CAS  Google Scholar 

  21. Salo K, Westerlund J, Andersson PU, Nielsen C, D’Anna B, Hallquist M (2011) J Phys Chem A 115:11671–11677

    Article  CAS  Google Scholar 

  22. Frisch MJ et al. (2009) Gaussian 09 (Revision B.01). Gaussian Inc, Wallingford, CT

    Google Scholar 

  23. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  24. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theor Comput 2:364–382

    Article  Google Scholar 

  25. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  26. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  27. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  28. In NIST Chemistry Web Book, NIST Standard Reference Data-base Number 69, Release (Constants of Diatomic Molecules data compiled by K.P. Huber and G. Herzberg), website: http://www.ccbdb.nist.gov/, 2005

  29. Kuchitsu K (1998) Structure of free polyatomic molecules basic data. Springer, Berlin, 1:58

  30. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  31. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  32. Zhurko G, Zhurko D (2011) ChemCraft 1.6

  33. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  34. Shimanouchi T ((1972)) In: Tables of molecular vibrational frequencies consolidated, vol 1, National Bureau of Standards, U.S. GPO, Washington, DC

  35. Galano A, Alvarez-Idaboy JR (2008) J Chem Theor Comput 4:322–327

    Article  CAS  Google Scholar 

  36. Yang L, Liu JY, Wang L, He HQ, Wang Y, Li ZS (2008) J Comput Chem 29:550–561

    Article  CAS  Google Scholar 

  37. Wu JY, Liu JY, Li ZS, Sun CC (2003) J Chem Phys 118:10986–10995

    Article  CAS  Google Scholar 

  38. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  39. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  40. Koch R, Kruger HU, Elend M, Palm WU, Zetzsch C (1996) Int J Chem Kinet 28:807–815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, BKM is thankful to University Grants Commission, New Delhi for providing Dr. D. S. K. Post doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B.K., Chakrabartty, A.K. & Deka, R.C. Theoretical study on rate constants for the reactions of CF3CH2NH2 (TFEA) with the hydroxyl radical at 298 K and atmospheric pressure. J Mol Model 19, 2189–2195 (2013). https://doi.org/10.1007/s00894-013-1762-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1762-7

Keywords

Navigation