Skip to main content
Log in

Strategies for anti-oxidative stress and anti-acid stress in bioleaching of LiCoO2 using an acidophilic microbial consortium

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

High metal ion concentrations and low pH cause severely inhibit the activity of an acidophilic microbial consortium (AMC) in bioleaching. This work investigated the effects of exogenous spermine on biofilm formation and the bioleaching efficiency of LiCoO2 by AMC in 9K medium. After the addition of 1 mM spermine, the activities of glutathione peroxidase and catalase increased, while the amount of H2O2, intracellular reactive oxygen species (ROS) and malondialdehyde in AMC decreased. These results indicated that the ability of AMC biofilm to resist oxidative stress introduced by 3.5 g/L Li+ and 30.1 g/L Co2+ was improved by spermine. The activity of glutamate decarboxylase was promoted to restore the intracellular pH buffering ability of AMC. Electrochemical measurements showed that the oxidation rate of pyrite was increased by exogenous spermine. As a result, high bioleaching efficiencies of 97.1% for Li+ and 96.1% for Co2+ from a 5.0% (w v−1) lithium cobalt oxide powder slurry were achieved. This work demonstrated that Tafel polarization can be used to monitor the AMC biofilm’s ability of uptaking electrons from pyrite during bioleaching. The corrosion current density increased with 1 mM spermine, indicating enhanced electron uptake by the biofilm from pyrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Apel AW, Dugan RP, Tuttle JH (1980) Adenosine 5’-triphosphate formation in Thiobacillus ferrooxidans vesicles by H+ ion gradients comparable to those of environmental conditions. J Bacteriol 142(1):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslıhan Ö, Gevrekc, (2017) The roles of polyamines in microorganisms. World J Microbiol Biotechnol 33(11):204

    Article  CAS  Google Scholar 

  • Barragán C, Márquez M, Dopson M, Montoya D (2021) RNA transcript response by an Acidithiobacillus spp. mixed culture reveals adaptations to growth on arsenopyrite. Extremophiles 25:143–158

    Article  PubMed  CAS  Google Scholar 

  • Bellenberg S, Barthen R, Boretska M, Zhang R, Sand W, Vera M (2015) Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Appl Microbiol Biotechnol 99(3):1435–1449

    Article  CAS  PubMed  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 359(4):378–390

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Lester JN (1980) Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol 40(2):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181(11):3525–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao J, Wei W, Xiao S, Liu X (2008) Response of Acidithiobacillus ferrooxidans ATCC 23270 gene expression to acid stress. World J Microbiol Biotechnol 24(10):2103–2109

    Article  CAS  Google Scholar 

  • Chen Y, Deng H, Hu H, Lu C, Tang Z (2020) A colorimetric method for rapid and quantitative detection of amino acid decarboxylase activity and its application. J an Nutr 32(1):390–396 (Chinese)

    Google Scholar 

  • Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Sand W, Wilmes P, Poetsch A, Dopson M (2018) Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum(T). Appl Environ Microbiol 84(3):e02091-e2117

    Article  PubMed  PubMed Central  Google Scholar 

  • Das KC, Misra HP (2004) Hydroxyl radical scavenging and singlet oxygen quenching properties of polyamines. Mol Cell Biochem 262(1–2):127–133

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Lindström BE, Hallberg KB (2002) ATP generation during reduced inorganic sulfur compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation. Extremophiles 6(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • Dorella G, Mansur MB (2007) A study of the separation of cobalt from spent Li-ion battery residues. J Power Sour 170(1):210–215

    Article  CAS  Google Scholar 

  • Dubin DT, Rosenthal SM (1960) The acetylation of polyamines in Escherichia coli. J Bio Chem 235(235):776–782

    Article  CAS  Google Scholar 

  • Feng S, Hou S, Cui Y, Tong Y, Yang H (2020) Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol 47:21–33

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Qiu Y, Huang Z, Yin Y, Yang H (2021) The adaptation mechanisms of Acidithiobacillus caldus CCTCC M 2018054 to extreme acid stress: bioleaching performance, physiology, and transcriptomics. Environ Res 199:111341

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Kadoma Y (2005) Kinetic evaluation of polyamines as radical scavengers. Anticancer Res 25(2A):965–969

    CAS  PubMed  Google Scholar 

  • Gevrekc AÖ (2017) The roles of polyamines in microorganisms. World J Microbiol Biotechnol 33(11):204

    Article  CAS  Google Scholar 

  • Govender Y, Gericke M (2011) Extracellular polymeric substances (EPS) from bioleaching systems and its application in bioflotation. Miner Eng 24(11):1122–1127

    Article  CAS  Google Scholar 

  • Gu G, Su L, Chen M, Sun X, Zhou H (2010) Bioleaching effects of Leptospirillum ferriphilum on the surface chemical properties of pyrite. Int J Min Sci Technol 20(002):286–291

    CAS  Google Scholar 

  • Gu G, Sun X, Hu K, Li J, Qiu G (2012) Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidans. Trans Nonferrous Met Soc China 22(5):1250–1254

    Article  CAS  Google Scholar 

  • Gu T, Wang D, Yassir Lekbach XuD (2021) Extracellular electron transfer in microbial biocorrosion. Curr Opin Electrochem 29:100763

    Article  CAS  Google Scholar 

  • Guo L, Wang J, Gou Y, Tan L, Zhao Y (2020) Comparative proteomics reveals stress responses of Vibrio parahaemolyticus biofilm on different surfaces: internal adaptation and external adjustment. Sci Total Environ 731:138386

    Article  CAS  PubMed  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci 95(19):11140–11145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heydarian A, Mousavi SM, Vakilchap F (2018) Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries. J Power Sour 378:19–30

    Article  CAS  Google Scholar 

  • Hu W, Feng S, Tong Y, Zhang H, Yang H (2020) Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: advances and perspectives. Biotechnol Adv 42(11):107580

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Delcour AH (1997) Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Bio Chem 272(30):18595–18601

    Article  CAS  Google Scholar 

  • Jantaro S, Menp P, Mulo P, Incharoensakdi A (2003) Content and biosynthesis of polyamines in salt and osmotically stressed cells of Synechocystis sp. PCC 6803. FEMS Microbiol Lett 228(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Park JH, Lee HK, Ju S, Hong S, Lee JR, Chung G, Lim JH, Jeong HJ (2009) Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food Chem Toxicol 47(3):525–529

    Article  CAS  Google Scholar 

  • Kolodkin-Gal I, Cao S, Chai L, Böttcher T, Kolter R, Clardy J, Losick R (2012) A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149(3):684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konings WN, Albers SV, Koning S, Driessen A (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81(1–4):61–72

    Article  CAS  PubMed  Google Scholar 

  • Krüger A, Vowinckel J, Mülleder M, Grote P, Capuano F, Bluemlein K, Ralser M (2013) Tpo1-mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein expression during the oxidative stress response. EMBO Rep 14(12):1113–1119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162(6):662–668

    Article  CAS  PubMed  Google Scholar 

  • Leonor M-F, Viridiana O-S, Kate C, Markus R (2015) Remaining mysteries of molecular biology: the role of polyamines in the cell. J Mol Biol 427(11):3389–3406

    Google Scholar 

  • Li Q, Zhu J, Li S, Zhang R, Xiao T, Sand W (2020) Interactions between cells of Sulfobacillus thermosulfidooxidans and Leptospirillum ferriphilum during pyrite bioleaching. Front in Microbiol. https://doi.org/10.3389/fmicb.2020.00044

    Article  Google Scholar 

  • Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW (1996) Mechanism of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62(9):3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu D, Cheng G, Zhang X, Gu T, Zhu M, Tan W, Wu X (2020a) The effect of metal ion stress on the biological leaching process of lithium cobalt oxide. J Chem Eng Chin Univ 34(04):954–962 (Chinese)

    CAS  Google Scholar 

  • Liu X, Liu H, Wu W, Zhang X, Tan W (2020b) Oxidative stress induced by metal ions in bioleaching of LiCoO2 by an acidophilic microbial consortium. Front Microbiol 10:3058–3075

    Article  PubMed  PubMed Central  Google Scholar 

  • Marton LJ, Morris DR (1987) Molecular and cellular functions of the polyamines. Inhib polyam metabol 79–105

  • Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep-UK 8(1):5710–5728

    Article  CAS  Google Scholar 

  • Niu Z, Zou Y, Xin B, Shi C, Liu C, Li Y (2014) Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Chemosphere 109:92–98

    Article  CAS  PubMed  Google Scholar 

  • Pastorekova S, Parkkila S, Zava DJ (2006) Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem 42:167–216

    Article  CAS  PubMed  Google Scholar 

  • Poma N, Vivaldi F, Bonini A, Salvo P, Francesco FD (2021) Microbial biofilm monitoring by electrochemical transduction methods. Trend Anal Chem 134:116134

    Article  CAS  Google Scholar 

  • Poulin R, Casero RA, Soulet D (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids 42:711–723

    Article  CAS  PubMed  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. Bmc Genom 10(1):394

    Article  CAS  Google Scholar 

  • Roy JJ, Cao B, Madhavi S (2021) A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Chemosphere 282:130944

    Article  CAS  PubMed  Google Scholar 

  • Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH (2003) Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol 185(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders SH, Tse E, Yates M, Otero FJ, Trammell SA, Stemp E, Barton JK, Tender LM, Newman DK (2020) Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 182(4):919-932.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng G, Yu H, Li X (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894

    Article  CAS  PubMed  Google Scholar 

  • Tkachenko A, Nesterova L, Pshenichnov M (2001) The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch Microbiol 176:155–157

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nat 428(6978):37–43

    Article  CAS  Google Scholar 

  • Velikova V, Yordano VI, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants - protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang H, Zhang X, Zhu M, Tan W (2015) Effects of dissolved oxygen and carbon dioxide under oxygen-rich conditions on the biooxidation process of refractory gold concentrate and the microbial community. Miner Eng 80:37–44

    Article  CAS  Google Scholar 

  • Wang J, Li G, Yin H, An T (2020) Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ Res 185:109451

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tian B, Bao Y, Qian C, Yang Y, Niu T, Xin B (2018) Functional exploration of extracellular polymeric substances (EPS) in the bioleaching of obsolete electric vehicle LiNixCoyMn1-x-yO2 Li-ion batteries. J Hazard Mater 354:250–257

    Article  CAS  PubMed  Google Scholar 

  • Wasim S, Zheng G, Zhang G, Ma X, Wang X, Suliman K (2018) Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Extremophile 22:851–863

    Article  CAS  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. J Biochem 325(2):289–297

    Article  CAS  Google Scholar 

  • Wu W, Liu X, Zhang X, Li X, Qiu Y, Zhu M, Tan W (2019) Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria. J Biosci Bioeng 128(3):344–354

    Article  CAS  PubMed  Google Scholar 

  • Xin B, Zhang D, Xian Z, Xia Y, Wu F, Chen S, Li L (2009) Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol 100(24):6163–6169

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Huang C, Li N, Wei Z, Wu H (2014) Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98(14):6409–6418

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Zhang L, Chen M, Zhao X, Duan Y, Meng Y, Zhang X, Shen R (2018) Effects of cadmium exposure on expression of glutathione synthetase system genes in Acidithiobacillus ferrooxidans. Extremophiles 22:895–902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the National Natural Science Foundation of China (Grant No. 21878083).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 21878083). National Natural Science Foundation of China, 21878083

Author information

Authors and Affiliations

Authors

Contributions

DL: visualization, writing–original draft, investigation, methodology, data curation. HS: conceptualization, data curation, validation. TG: data curation, writing–review and editing, validation. GC: resources, investigation. MZ and WT: investigation, software. XZ: conceptualization, methodology, data curation, writing–review and editing, validation, supervision.

Corresponding authors

Correspondence to Xu Zhang or Tingyue Gu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Shi, H., Chen, G. et al. Strategies for anti-oxidative stress and anti-acid stress in bioleaching of LiCoO2 using an acidophilic microbial consortium. Extremophiles 26, 22 (2022). https://doi.org/10.1007/s00792-022-01270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00792-022-01270-3

Keywords

Navigation