Skip to main content
Log in

Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Indigenous iron-oxidizing bacteria were isolated on modified selective 9KFe2+ medium from Baiyin copper mine stope, China. Three distinct acidophilic bacteria were isolated and identified by analyzing the sequences of 16S rRNA gene. Based on published sequences of 16S rRNA gene in the GenBank, a phylogenetic tree was constructed. The sequence of isolate WG101 showed 99% homology with Acidithiobacillus ferrooxidans strain AS2. Isolate WG102 exhibited 98% similarity with Leptospirillum ferriphilum strain YSK. Similarly, isolate WG103 showed 98% similarity with Leptospirillum ferrooxidans strain L15. Furthermore, the biotechnological potential of these isolates in consortia form was evaluated to recover copper and zinc from their ore. Under optimized conditions, 77.68 ± 3.55% of copper and 70.58 ± 3.77% of zinc were dissolved. During the bioleaching process, analytical study of pH and oxidation–reduction potential fluctuations were monitored that reflected efficient activity of the bacterial consortia. The FTIR analysis confirmed the variation in bands after treatment with consortia. The impact of consortia on iron speciation within bioleached ore was analyzed using Mössbauer spectroscopy and clear changes in iron speciation was reported. The use of indigenous bacterial consortia is more efficient compared to pure inoculum. This study provided the basic essential conditions for further upscaling bioleaching application for metal extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo F, Gentina JC, Valencia P (2004) Optimization of pulp density and particle size in the biooxidation of a pyritic gold concentrate by Sulfolobus metallicus [J]. World J Microbiol Biotechnol 20:865–869

    Article  CAS  Google Scholar 

  • Ahonen L, Tuovinen OH (1992) Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl Environ Microbiol 58:600–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anders BJ, Colin W (1995) Ferric sulphate oxidation using Thiobacillus ferrooxidans: a review. Process Biochem 30:225–236

    Article  Google Scholar 

  • Apel AW, Dugan RP (1978) Hydrogen ion utilization by iron grown Thiobacillus ferrooxidans [M]. In: Murr EL, Torma AE, Brierley AJ (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, New York, pp 45–58

    Chapter  Google Scholar 

  • Auld RR, Myre M, Mykytczuk NC, Leduc LG, Merritt TJ (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93(2):108–115

    Article  CAS  PubMed  Google Scholar 

  • Baba AA, Adekola FA, Atata RF, Ahmed RN, Panda S (2011) Bioleaching of Zn(II) and Pb(II) from Nigerian sphalerite and galena ores by a mixed culture of acidophilic bacteria. Trans Non-ferrous Met Soc China 21:2535–2541

    Article  CAS  Google Scholar 

  • Bhatti TM, Bigham JM, Carlson L, Tuovinen OH (1993) Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans [J]. Appl Environ Microbiol 59:1984–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron RA, Yeung CW, Greer CW, Gould WD, Mortazavi S, Bédard PL, Kennedy KJ (2010) The bacterial community structure during bioleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH. Hydrometallurgy 104(2):207–215

    Article  CAS  Google Scholar 

  • Ciftci H, Akcil A (2010) Effect of biooxidation conditions on cyanide consumption and gold recovery from a refractory flotation gold concentrate. Hydrometallurgy 104:142–149

    Article  CAS  Google Scholar 

  • Das T, Ghosh MK, Chaudhury GR (2005) Assessment of the significant parameters influencing the bio-oxidation and bioprecipitation of iron from industrial leach liquor [J]. Miner Process Extr Metall 114:57–64

    Article  CAS  Google Scholar 

  • Deng Y, Liu XD, Liu HW, Jiang HD, Xu LF, Xiao YH, Liang YL (2017) Bioleaching of cadmium from contaminated paddy fields by consortium of autotrophic and indigenous cadmium-tolerant bacteria. Solid State Phenom 262:617–621

    Article  Google Scholar 

  • Deveci H, Akcil A, Alp I (2004) Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron [J]. Hydrometallurgy 73:293–303

    Article  CAS  Google Scholar 

  • Ding JN, Jian GAO, Wu XL, Zhang CG, Wang DZ, Qiu GZ (2007) Jarosite-type precipitates mediated by YN22, Sulfobacillus thermosulfidooxidans, and their influences on strain. Trans Non-ferrous Met Soc China 17(5):1038–1044

    Article  CAS  Google Scholar 

  • Fu B, Zhou H, Zhang R, Qiu G (2008) Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. Int Biodeterior Biodegrad 62:109–115

    Article  CAS  Google Scholar 

  • Ghassa S, Boruomand Z, Abdollahi H, Moradian M, Akcil A (2014) Bioleaching of high grade Zn–Pb bearing ore by mixed moderate thermophilic microorganisms. Sep Purif Technol 136:241–249

    Article  CAS  Google Scholar 

  • Guo Z, Zhang L, Cheng Y, Xiao X, Pan F, Jiang K (2010) Effects of pH, pulp density and particle size on solubilization of metals from a Pb/Zn smelting slag using indigenous moderate thermophilic bacteria. Hydrometallurgy 104(1):25–31

    Article  CAS  Google Scholar 

  • Haghshenas DF, Bonakdarpour B, Keshavarz E, Nasernejad B (2012) Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors. Hydrometallurgy 111–112:22–28

    Article  CAS  Google Scholar 

  • Hassanshahian M, Ghoebani S (2018) Isolation and characterization of iron and sulfur-oxidizing bacteria from Maiduk copper mine at Shahrbabk province in Iran. Geomicrobiology 35(4):261–265

    Article  CAS  Google Scholar 

  • Johnson DB (2013) Development and application of biotechnologies in the metal mining industry. Environ Sci Pollut Res 20(11):7768–7776

    Article  Google Scholar 

  • Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3(10):630–637

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Hallberg KB, Hedrich S (2014) Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium “Ferrovum myxofaciens”. Appl Environ Microbiol 80(2):672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling SE, Palmer ML, Caracatsanis FC, Johnson JA, Watling HR (2005) Leaching of chalcopyrite and sphalerite using bacteria enriched from a spent chalcocite heap [J]. Miner Eng 18:1289–1296

    Article  CAS  Google Scholar 

  • Khalid AM, Bhatti TM, Umar M (1993) An improved solid medium for isolation, enumeration and genetic investigations of autotrophic iron-and sulphur-oxidizing bacteria. Appl Microbiol Biotechnol 39(2):259–263

    Article  CAS  Google Scholar 

  • Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini RA, Cambiazo V (2016) The bioleaching potential of a bacterial consortium. Bioresour Technol 218:659–666

    Article  CAS  PubMed  Google Scholar 

  • Leahy MJ, Schwarz MP (2009) Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns. Hydrometallurgy 98:181–191

    Article  CAS  Google Scholar 

  • Libowitzky E, Rossman GR (1997) An IR adsorption for water in minerals. Am Mineral 82:1111–1115

    Article  CAS  Google Scholar 

  • Manafi Z, Abdollahi H, Tuovinen OH (2013) Shake flask and column bioleaching of pyritic porphyry copper sulphide ore. Int J Miner Process 119:16–20

    Article  CAS  Google Scholar 

  • Mishra S, Pradhan N, Panda S, Akcil A (2016) Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol 152:325–342

    Article  CAS  Google Scholar 

  • Nowaczyk K, Juszczak A, Domka F, Siepak J (1998) The use of Thiobacillus ferrooxidans bacteria in the process of chalcopyrite leaching. Pol J Environ Stud 7:307–312

    CAS  Google Scholar 

  • Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 69(4):1936–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olubambi PA, Ndlovu S, Potgieter JH, Borode JO (2008) Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores. Trans Non-ferrous Met Soc China 18(5):1234–1246

    Article  CAS  Google Scholar 

  • Osorio H, Mangold S, Denis Y, Ñancucheo I, Esparza M, Johnson DB, Bonnefoy V, Dopson M, Holmes DS (2013) Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79:2172–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012) Insights into heap bioleaching of lowgrade chalcopyrite ores: a pilot scale study. Hydrometallurgy 125–126:157–165

    Article  CAS  Google Scholar 

  • Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB (2013a) Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer. Bioresour Technol 130:332–338

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Sukla LB, Mishra BK (2013b) Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Front Environ Sci Eng 7:281–293

    Article  CAS  Google Scholar 

  • Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra UB, Subbaiah T, Sukla LB, Mishra BK (2014) Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route. Korean J Chem Eng 31:452–460

    Article  CAS  Google Scholar 

  • Panda S, Biswal A, Mishra S, Panda PK, Pradhan N, Mohapatra U, Akcil A (2015) Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: a new concept of biohydrometallurgy. Hydrometallurgy 153:98–105

    Article  CAS  Google Scholar 

  • Panda S, Akcil A, Mishra S, Erust C (2017) Synergistic effect of biogenic Fe3+ coupled to S° oxidation on simultaneous bioleaching of Cu Co, Zn and As from hazardous pyrite ash waste. J Hazard Mater 325:59–70

    Article  CAS  PubMed  Google Scholar 

  • Peng TJ, Shi LJ, Yu RL, Gu GH, Dan Z, Miao CN, Zeng WM (2016) Effects of processing pH stimulation on cooperative bioleaching of chalcopyrite concentrate by free and attached cells. Trans Non-ferrous Met Soc China 26(8):2220–2229

    Article  CAS  Google Scholar 

  • Petersen J, Dixon DG (2007) Modeling and optimization of heap bioleach processes. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, pp 153–176

    Chapter  Google Scholar 

  • Petrus HBTM, Wanta KC, Setiawan H, Perdana I, Astuti W (2018) Effect of pulp density and particle size on indirect bioleaching of Pomalaa nickel laterite using metabolic citric acid. IOP Conf Ser Mater Sci Eng 285(1):012004 (IOP Publishing)

    Article  Google Scholar 

  • Prasad PSR, Prasad KS, Chaitanya VK, Babu EVSSK, Sreedhar B, Murthy SR (2006) In situ FTIR study on the dehydration of natural goethite. J Asian Earth Sci 27(4):503–511

    Article  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Ruan HD, Frost RL, Kloprogge JT (2001) The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta Part A Mol Biomol Spectrosc 57(13):2575–2586

    Article  CAS  Google Scholar 

  • Russell JD, Fraser AR (1994) In: Wilson MJ (ed) Infrared methods in clay mineralogy: spectroscopic and chemical determinative methods. Chapman & Hall, London, pp 49–52

    Google Scholar 

  • Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Ali B, Rafiq M (2018) Diversity of prokaryotic communities indigenous to acid mine drainage and related rocks from Baiyin open-pit copper mine stope, China. Geomicrobiology 35(7):580–600

    Article  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) Biochemistry of bacterial leaching direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Sanket AS, Ghosh S, Sahoo R, Nayak S, Das AP (2017) Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiology 34(1):71–80

    Article  CAS  Google Scholar 

  • Shiers DW, Collinson DM, Watling HR (2017) The impact of heap self-heating on microbial activity during the bioleaching of low-grade copper sulfide ores. Solid State Phenom 262:233–236 (Trans Tech Publications)

    Article  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans; an improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77(5):642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tipre DR, Dave SR (2004) Bioleaching process for Cu–Pb–Zn bulk concentrate at high pulp density [J]. Hydrometallurgy 75:37–43

    Article  CAS  Google Scholar 

  • Tischler JS, Jwair RJ, Gelhaar N, Drechsel A, Skirl AM, Wiacek C, Schlömann M (2013) New cultivation medium for “Ferrovum” and Gallionella-related strains. J Microbiol Methods 95(2):138–144

    Article  CAS  PubMed  Google Scholar 

  • Utimura SK, Rosario CGA, Botelho AB, Tenório JAS, Espinosa DCR (2017) Bioleaching process for metal recovery from waste materials. Energy Technol. https://doi.org/10.1007/978-3-319-52192-3_28 (Springer, Cham)

    Article  Google Scholar 

  • Van der Grift CJG, Geus JW, Kappers MJ, Van der Maas JH (1989) Characterization of copper–silica catalysts by means of in situ diffuse reflectance infrared Fourier transform spectroscopy. Catal Lett 3(2):159–168

    Article  Google Scholar 

  • Wang Y, Su L, Zeng W, Wan L, Chen Z, Zhang L, Zhou H (2014) Effect of pulp density on planktonic and attached community dynamics during bioleaching of chalcopyrite by a moderately thermophilic microbial culture under uncontrolled conditions. Miner Eng 61:66–72

    Article  CAS  Google Scholar 

  • Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy 84:81–108

    Article  CAS  Google Scholar 

  • Yang Y, Diao M, Liu K, Qian L, Nguyen AV, Qiu G (2013) Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp. Hydrometallurgy 131:93–98

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Z, Chai L, Wang Y, Liu Y, Xiao R (2016) Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. J Hazard Mater 301:145–152

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Twardowska I, Wei S, Sun L, Wang J, Zhu J, Cai J (2015) Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction. J Hazard Mater 288:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zheng GD, Fu BH, Takahashi Y, Kuno A, Matsuo M, Zhang JD (2010) Chemical speciation of redox sensitive elements during hydrocarbon leaching in the Junggar Basin, Northwest China. J Asian Earth Sci 39(6):713–723

    Article  Google Scholar 

  • Zhou HB, Zeng WM, Yang ZF, Xie YJ, Qiu GZ (2009) Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor. Bioresour Technol 100:515–520

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xia J, Yang Y, Nie ZY, Zheng L, Ma CY, Zhang RY, Peng A, Tang L, Qiu G (2011) Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Bioresour Technol 102:3877–3882

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was sponsored by CAS-TWAS President’s Fellowship for international Ph.D. students to WS, partially by the Natural Science Foundation of China (41572352) and Key Laboratory of Petroleum Resources, Gansu Province (SZDKFJJ20160601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Driessen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, W., Zheng, G., Zhang, G. et al. Bioleaching of copper- and zinc-bearing ore using consortia of indigenous iron-oxidizing bacteria. Extremophiles 22, 851–863 (2018). https://doi.org/10.1007/s00792-018-1042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-018-1042-7

Keywords

Navigation