Skip to main content
Log in

Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbiologically influenced corrosion (MIC), or microbial biocorrosion, is caused directly by microbial metabolic activities/products or induced by microbial biofilm’s damage of a protective film that exposes a solid surface to a pre-existing corrosive environment. MIC causes billions of dollars of losses in various industrial processes, especially in oil and gas and water utilities. The mitigation of problematic industrial microbes typically relies on biocides whose discharges can cause environmental problems. Thus, more effective biocide applications are desired to minimize environmental impact. D-Limonene, a citrus peel oil, generally regarded as safe (GRAS), was used to enhance the popular biodegradable tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide. An oilfield mixed-culture biofilm was grown anaerobically in enriched artificial seawater containing C1018 carbon steel coupons for 7 days at 37 °C. One hundred ppm (w/w) D-limonene reduced general heterotrophic bacteria (GHB) and acid-producing bacteria (APB) effectively, leading to 5.4-log and 6.0-log reductions in sessile GHB and APB cell counts, respectively, compared to no treatment control. The combination of 100 ppm D-limonene + 100 ppm THPS achieved extra 1.0-log SRB, 0.6-log GHB and 0.5-log APB reductions in sessile cell counts, which led to extra 58% reduction in microbial corrosion mass loss (1.2 vs. 0.5 mg/cm2) and extra 30% reductions in maximum pit depth (11.5 vs. 8.1 µm), compared to 100 ppm THPS-only treatment. Linear polarization resistance and potentiodynamic polarization (PDP) corrosion data supported mass loss and pitting data.

Graphical abstract

Mixed-culture biofilms on carbon steel coupons after 7 day incubation at 37 °C showing enhanced biocide treatment outcome using D-limonene + THPS: A no treatment, B 100 ppm D-limonene, C 100 ppm THPS, D 100 ppm D-limonene + 100 ppm THPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wolodko J, Haile T, Khan F et al (2018) Modeling of microbiologically influenced corrosion (MIC) in the oil and gas industry—past, present and future. NACE International

    Google Scholar 

  2. Unsal T, Jia R, Kumseranee S et al (2019) Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. Eng Fail Anal 100:544–555

    Article  CAS  Google Scholar 

  3. Street CN, Gibbs A (2010) Eradication of the corrosion-causing bacterial strains Desulfovibrio vulgaris and Desulfovibrio desulfuricans in planktonic and biofilm form using photodisinfection. Corros Sci 52:1447–1452

    Article  CAS  Google Scholar 

  4. Bhat S, Kumar B, Prasad S, Katarki M (2011) Failure of a new 8-in pipeline from group gathering station to central tank farm. Mater Perform 50:50–54

    Google Scholar 

  5. Skovhus TL, Eckert RB, Rodrigues E (2017) Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. J Biotechnol 256:31–45

    Article  CAS  PubMed  Google Scholar 

  6. Sharma M, Liu H, Chen S et al (2018) Effect of selected biocides on microbiologically influenced corrosion caused by Desulfovibrio ferrophilus IS5. Sci Rep 8:16620

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang D, Liu J, Jia R et al (2020) Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros Sci 177:108993

    Article  CAS  Google Scholar 

  8. Rasheed PA, Jabbar KA, Rasool K et al (2019) Controlling the biocorrosion of sulfate-reducing bacteria (SRB) on carbon steel using ZnO/chitosan nanocomposite as an eco-friendly biocide. Corros Sci 148:397–406

    Article  Google Scholar 

  9. Al-Nabulsi KM, Al-Abbas FM, Rizk TY, Ala’a Edin MS (2015) Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria. Eng Fail Anal 58:165–172

    Article  CAS  Google Scholar 

  10. Kip N, van Veen JA (2015) The dual role of microbes in corrosion. ISME J 9:542–551

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Ramadan M, Kumseranee S et al (2020) Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide. J Mater Sci Technol 57:146–152

    Article  Google Scholar 

  12. Videla HA (2002) Prevention and control of biocorrosion. Int Biodeterior Biodegrad 49:259–270

    Article  CAS  Google Scholar 

  13. Jia R, Yang D, Li Y et al (2017) Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by d-amino acids. Int Biodeterior Biodegrad 117:97–104

    Article  CAS  Google Scholar 

  14. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  15. Kahrilas GA, Blotevogel J, Stewart PS, Borch T (2015) Biocides in hydraulic fracturing fluids: a critical review of their usage, mobility, degradation, and toxicity. Environ Sci Technol 49:16–32

    Article  CAS  PubMed  Google Scholar 

  16. Gorman SP, Scott EM, Russell AD (1980) Antimicrobial activity, uses and mechanism of action of glutaraldehyde. J Appl Bacteriol 48:161–190

    Article  CAS  PubMed  Google Scholar 

  17. Stipaničev M, Turcu F, Esnault L et al (2013) Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment. Electrochim Acta 113:390–406

    Article  Google Scholar 

  18. Lekbach Y, Xu D, El Abed S et al (2018) Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract. Int Biodeterior Biodegrad 133:159–169

    Article  CAS  Google Scholar 

  19. Lekbach Y, Dong Y, Li Z et al (2019) Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. Corros Sci 157:98–108

    Article  CAS  Google Scholar 

  20. Wang J, Li C, Zhang X et al (2019) Corrosion behavior of Aspergillus niger on 7075 aluminum alloy and the inhibition effect of zinc pyrithione biocide. J Electrochem Soc 166:G39–G46

    Article  CAS  Google Scholar 

  21. Jia R, Yang D, Dou W et al (2019) A sea anemone-inspired small synthetic peptide at sub-ppm concentrations enhanced biofilm mitigation. Int Biodeterior Biodegrad 139:78–85

    Article  CAS  Google Scholar 

  22. Li Y, Jia R, Al-Mahamedh HH et al (2016) Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Front Microbiol 7:896

    PubMed  PubMed Central  Google Scholar 

  23. Moufida S, Marzouk B (2003) Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry 62:1283–1289

    Article  CAS  PubMed  Google Scholar 

  24. Sun J (2007) D-Limonene: safety and clinical applications. Altern Med Rev 12:259

    PubMed  Google Scholar 

  25. Zhang Z, Vriesekoop F, Yuan Q, Liang H (2014) Effects of nisin on the antimicrobial activity of D-limonene and its nanoemulsion. Food Chem 150:307–312

    Article  CAS  PubMed  Google Scholar 

  26. Miguel MG (2010) Antioxidant and anti-inflammatory activities of essential oils: a short review. Molecules 15:9252–9287

    Article  PubMed  PubMed Central  Google Scholar 

  27. Settanni L, Palazzolo E, Guarrasi V et al (2012) Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control 26:326–330

    Article  CAS  Google Scholar 

  28. Chikhoune A, Hazzit M, Kerbouche L et al (2013) Tetraclinis articulata (Vahl) masters essential oils: chemical composition and biological activities. J Essent Oil Res 25:300–307

    Article  CAS  Google Scholar 

  29. Kijkla P, Wang D, Mohamed ME et al (2021) Efficacy of glutaraldehyde enhancement by d-limonene in the mitigation of biocorrosion of carbon steel by an oilfield biofilm consortium. World J Microbiol Biotechnol 37:174

    Article  CAS  PubMed  Google Scholar 

  30. Jia R, Wang D, Jin P et al (2019) Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corros Sci 153:127–137

    Article  CAS  Google Scholar 

  31. Sutton S (2010) The most probable number method and its uses in enumeration, qualification, and validation. J Valid Technol 16:35–38

    Google Scholar 

  32. ASTM G1-03 (2017) e1, 2017. Standard Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens. ASTM International, West Conshohocken, Pennsylvania. http://www.astm.org

  33. Han Y, Sun Z, Chen W (2019) Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules 25:33

    Article  PubMed Central  Google Scholar 

  34. Bajpai P (2015) The control of microbiological problems. Pulp Paper Ind, pp 103–195

  35. Talbot RE, Larsen J, Sanders PF (2000) Experience with the use of tetrakishydroxymethylphosphonium sulfate (THPS) for the control of downhole hydrogen sulfide. NACE International

    Google Scholar 

  36. Sharma M, Menon P, Voordouw J et al (2018) Effect of long term application of tetrakis(hydroxymethyl)phosphonium sulfate (THPS) in a light oil-producing oilfield. Biofouling 34:605–617

    Article  CAS  PubMed  Google Scholar 

  37. Senthilmurugan B, Radhakrishnan JS, Poulsen M et al (2019) Microbially induced corrosion in oilfield: microbial quantification and optimization of biocide application. J Chem Technol Biotechnol 94:2640–2650

    Article  CAS  Google Scholar 

  38. Martino PD, Martino PD (2021) Ways to improve biocides for metalworking fluid. AIMS Microbiol 7:13–27

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jin Y, Li Z, Zhou E et al (2019) Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of Shewanella oneidensis and Bacillus licheniformis against 316L stainless steel. Electrochim Acta 316:93–104

    Article  CAS  Google Scholar 

  40. Jia R, Tan JL, Jin P et al (2018) Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros Sci 130:1–11

    Article  CAS  Google Scholar 

  41. Liu H, Gu T, Zhang G et al (2018) Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corros Sci 136:47–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PTT Exploration and Production (Thailand) and Saudi Aramco provided financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingyue Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unsal, T., Wang, D., Kijkla, P. et al. Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium. Bioprocess Biosyst Eng 45, 669–678 (2022). https://doi.org/10.1007/s00449-021-02685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02685-6

Keywords

Navigation