Skip to main content

Antibiotics Producing Soil Microorganisms

  • Chapter
  • First Online:
Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

Abstract

Several microorganisms are known to produce a wide variety of antibiotics that are being developed and used against numerous life-threatening infections and diseases in humans, animals, and agriculture. Antibiotics are produced by several groups of microbes such as bacteria, fungi, and actinomycetes as their natural defense system against other microbes living in their vicinity. Soils are home to a large and diverse population of microorganisms due to its heterogeneous nature. Large variation in biotic and abiotic conditions of soil makes its microbial inhabitants to adapt and develop strategies for survival and successful reproduction. Production of antimicrobials is one of the most potent strategies for this adaptation. Soil microorganism had always been the primary source for production of antibiotics and still continues to maintain its significance. But indiscriminate use of antibiotics and disinfectants in medicine, agriculture, and fish culture and their release in environment has given birth to another critical problem of multidrug-resistant pathogenic microbes and hence, we are still in need of effective metabolites that can be used as antibiotics to combat these resistant strains. Soil microbes still remain the chief contender for this research. This chapter includes the history, classification, mode of action, and applications of antibiotics. Further, the importance of soil microbes for the production of antibiotics has been explained. The current problems and future aspects of antibiotic production from soil microorganisms have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  PubMed  Google Scholar 

  • Alvarez Lerma F, Sierra Camerino R, Alvarez Rocha L, Rodriguez Colomo O (2010) [Antibiotic policy in critical patients]. Med Intensiva 34:600–608

    Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  CAS  PubMed  Google Scholar 

  • Anderson AS, Wellington EM (2001) The taxonomy of streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  PubMed  Google Scholar 

  • Baron AL (1950) Handbook of antibiotics. Reinhold, New York

    Google Scholar 

  • Belgrader P, Benett W, Hadley D, Richards J, Stratton P, Mariella R Jr, Milanovich F (1999) PCR detection of bacteria in seven minutes. Science 284:449–450

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Berdy J (1974) Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol 18:309–406

    Article  CAS  PubMed  Google Scholar 

  • Berdy J (1980) Recent advances and prospects of antibiotic research. Process Biochem 15:28–35

    CAS  Google Scholar 

  • Bosso JA, Mauldin PD, Salgado CD (2010) The association between antibiotic use and resistance: the role of secondary antibiotics. Eur J Clin Microbiol Infect Dis 29:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Brotz-Oesterhelt H, Brunner NA (2008) How many modes of action should an antibiotic have? Curr Opin Pharmacol 8:564–573

    Article  PubMed  Google Scholar 

  • Burkholder PR, Evans AW, McVeigh I, Thornton HK (1944) Antibiotic activity of lichens. Proc Natl Acad Sci U S A 30:250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MS, Buss AD (2006) Natural products—the future scaffolds for novel antibiotics? Biochem Pharmacol 71:919–929

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Cooper MA (2011) Antibiotics in the clinical pipeline in 2011. J Antibiot (Tokyo) 64:413–425

    Article  CAS  Google Scholar 

  • Cabello FC (2004) [Antibiotics and aquaculture in Chile: implications for human and animal health]. Rev Med Chil 132:1001–1006

    Google Scholar 

  • Ceylan O, Okmen G, Ugur A (2008) Isolation of soil Streptomyces as source antibiotics active against antibiotic-resistant bacteria. EurAsian J Biosci 2:73–82

    Google Scholar 

  • Chopra I, Hesse L, O’Neill AJ (2002) Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol 92(Suppl):4S–15S

    Article  PubMed  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  PubMed  Google Scholar 

  • Davies J (1990) What are antibiotics? Archaic functions for modern activities. Mol Microbiol 4:1227–1232

    Article  CAS  PubMed  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69:1–39

    CAS  PubMed  Google Scholar 

  • Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16

    Article  CAS  Google Scholar 

  • Desai MJ, Armstrong DW (2003) Separation, identification, and characterization of microorganisms by capillary electrophoresis. Microbiol Mol Biol Rev 67:38–51. Table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer SB, Brown ED (2009) New screens and targets in antibacterial drug discovery. Curr Opin Microbiol 12:497–504

    Article  CAS  PubMed  Google Scholar 

  • Finch R, Greenwood D, Norrby SR, Whitley RJ (2003) Antibiotic and chemotherapy: anti-infective agents and their use in therapy. Churchill Livingstone, New York

    Google Scholar 

  • Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming A (1980) Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis 2:129–139

    Article  CAS  PubMed  Google Scholar 

  • Franklin TJ, Snow GA (1981) Biochemistry of antimicrobial action. Chapman and Hall, New York, pp 1–56

    Google Scholar 

  • Gaskins HR, Collier CT, Anderson DB (2002) Antibiotics as growth promotants: mode of action. Anim Biotechnol 13:29–42

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez del Val A, Platas G, Basilio A, Cabello A, Gorrochategui J, Suay I, Vicente F, Portillo E, Jimenez del Rio M, Reina GG, Pelaez F (2001) Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int Microbiol 4:35–40

    CAS  PubMed  Google Scholar 

  • Gottlieb D (1967) Antibiotics and cell metabolism. Hindustan Antibiot Bull 10:123–134

    CAS  PubMed  Google Scholar 

  • Hmmond SM, Lambert PA (1978) Antibiotics and antimicrobial action. Edward Arnold, London, pp 5–52

    Google Scholar 

  • Hunter P (2015) Antibiotic discovery goes underground: the discovery of teixobactin could revitalise the search for new antibiotics based on the novel method the researchers used to identify the compound. EMBO Rep 16:563–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarman KH, Cebula ST, Saenz AJ, Petersen CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Koberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol 4:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kummerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Article  CAS  PubMed  Google Scholar 

  • Kummerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  PubMed  Google Scholar 

  • Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127

    Article  CAS  PubMed  Google Scholar 

  • Lancini G, Parenti F (1982) Antibiotics an integrated view. Springer, New York, pp l–241

    Google Scholar 

  • Locci R (1989) Streptomyces and related genera In: Williams ST, Sharpe ME, Holt J (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams and Wilkins, Baltimore, pp 2451–2508

    Google Scholar 

  • Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65

    Article  CAS  PubMed  Google Scholar 

  • Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN Jr, McCrimmon D, Zasloff M (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci U S A 90:1354–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okafor N (1987) Antibiotics and anti-tumour agents. In: Industrial microbiology, pp 336–369

    Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oskay M (2009) Antifungal and antibacterial compounds from Streptomyces strains. Afr J Biotechnol 8:3007–3017

    CAS  Google Scholar 

  • Oskay M, Tamer A, Azeri C (2004) Antibacterial activity of some actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3:441–446

    Article  Google Scholar 

  • Perez MJ, Falque E, Dominguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14. doi: 10.3390/md14030052

  • Piddock LJ (2015) Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J Antimicrob Chemother 70:2679–2680

    Article  CAS  PubMed  Google Scholar 

  • Procopio RE, Silva IR, Martins MK, Azevedo JL, Araujo JM (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471

    Article  PubMed  Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queener SW, Sebek OK, Vezina C (1978) Mutants blocked in antibiotic synthesis. Annu Rev Microbiol 32:593–636

    Article  CAS  PubMed  Google Scholar 

  • Rath CM, Janto B, Earl J, Ahmed A, Hu FZ, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff JJ, Kweon HK, Christiansen MA, Hakansson K, Williams RM, Ehrlich GD, Sherman DH (2011) Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem Biol 6:1244–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinehart KL (1992) Secondary metabolites from marine organisms. Ciba Found Symp 171:236–249. Discussion 249–254

    CAS  PubMed  Google Scholar 

  • Ruan J (2013) [Bergey’s manual of systematic bacteriology (second edition) Volume 5 and the study of Actinomycetes systematic in China]. Wei Sheng Wu Xue Bao 53:521–530

    Google Scholar 

  • Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, Wahl KL (1999) Reproducibility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 13:1580–1585

    Article  CAS  PubMed  Google Scholar 

  • Sahoo KC, Tamhankar AJ, Johansson E, Lundborg CS (2010) Antibiotic use, resistance development and environmental factors: a qualitative study among healthcare professionals in Orissa, India. BMC Public Health 10:629

    Article  PubMed  PubMed Central  Google Scholar 

  • Shlaes DM (2010) Antibiotics: the perfect storm. Springer, Dordrecht

    Book  Google Scholar 

  • Sköld O (2006) [Antibiotika och antibiotika resistens]. Studentlitteratur

    Google Scholar 

  • Sneader W (2005) Drug discovery: a history. Wiley, Chichester

    Book  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ. In: Hurst CJ, Knudsen GR, MJ MI, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. American Society of Microbiology, Washington

    Google Scholar 

  • Tuon FF, Kruger M, Terreri M, Penteado-Filho SR, Gortz L (2011) Klebsiella ESBL bacteremia-mortality and risk factors. Braz J Infect Dis 15:594–598

    Article  PubMed  Google Scholar 

  • Walsh CT, Wright G (2005) Introduction: antibiotic resistance. Chem Rev 105:3

    Article  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Wolff M (2004) Use and misuse of antibiotics. Time to evaluate it beyond humans. Rev Med Chil 132:909–911

    Article  PubMed  Google Scholar 

  • Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Chen KH, Nowick JS (2016) Elucidation of the teixobactin pharmacophore. ACS Chem Biol 11:1823–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chandra, N., Kumar, S. (2017). Antibiotics Producing Soil Microorganisms. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_1

Download citation

Publish with us

Policies and ethics