Skip to main content

Advertisement

Log in

The mechanism of lncRNA MALAT1 targeting the miR-124-3p/IGF2BP1 axis to regulate osteogenic differentiation of periodontal ligament stem cells

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs).

Materials and methods

We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1.

Results

Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1’s crucial role in bone formation.

Conclusions

Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs’ osteogenic differentiation.

Clinical relevance

These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Monsarrat P, Vergnes JN, Nabet C, Sixou M, Snead ML, Planat-Bénard V, Casteilla L, Kémoun P (2014) Concise review: mesenchymal stromal cells used for periodontal regeneration: a systematic review. Stem Cells Transl Med 3:768–774. https://doi.org/10.5966/sctm.2013-0183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qi L, Zhang Y (2014) The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway. Cell Physiol Biochem 33:433–445. https://doi.org/10.1159/000358624

    Article  CAS  PubMed  Google Scholar 

  3. Ha SH, Choung PH (2020) MSM promotes human periodontal ligament stem cells differentiation to osteoblast and bone regeneration. Biochem Biophys Res Commun 528:160–167. https://doi.org/10.1016/j.bbrc.2020.05.097

    Article  CAS  PubMed  Google Scholar 

  4. Kinane DF, Stathopoulou PG, Papapanou PN (2017) Periodontal diseases. Nat Rev Dis Prim 3:17038. https://doi.org/10.1038/nrdp.2017.38

    Article  PubMed  Google Scholar 

  5. Menicanin D, Mrozik KM, Wada N, Marino V, Shi S, Bartold PM, Gronthos S (2014) Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 23:1001–1011. https://doi.org/10.1089/scd.2013.0490

    Article  CAS  PubMed  Google Scholar 

  6. Yu B, Hu J, Li Q, Wang F (2021) CircMAP3K11 contributes to proliferation, apoptosis and migration of human periodontal ligament stem cells in inflammatory microenvironment by regulating TLR4 via miR-511 sponging. Front Pharmacol 12:633353. https://doi.org/10.3389/fphar.2021.633353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li X, Zhang B, Wang H, Zhao X, Zhang Z, Ding G, Wei F (2020) The effect of aging on the biological and immunological characteristics of periodontal ligament stem cells. Stem Cell Res Ther 11:326. https://doi.org/10.1186/s13287-020-01846-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou Y, Fan W, Xiao Y (2014) The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC. Biomed Res Int 2014:890675. https://doi.org/10.1155/2014/890675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  10. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772. https://doi.org/10.1016/j.tibs.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  11. Lin C, Yang L (2018) Long noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol 28:287–301. https://doi.org/10.1016/j.tcb.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  12. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  13. Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105. https://doi.org/10.1038/nsmb0207-103

    Article  CAS  PubMed  Google Scholar 

  14. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21. https://doi.org/10.1038/nrg3606

    Article  CAS  PubMed  Google Scholar 

  15. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Wang Y, Kong B, Langerød A, Børresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43:621–629. https://doi.org/10.1038/ng.848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi G, Zhichen W, Zirui W, Shengwang W (2020) The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res 53:40. https://doi.org/10.1186/s40659-020-00309-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bellavia D, Salamanna F, Raimondi L, De Luca A, Carina V, Costa V, Alessandro R, Fini M, Giavaresi G (2019) Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci 76:3723–3744. https://doi.org/10.1007/s00018-019-03162-w

    Article  CAS  PubMed  Google Scholar 

  18. Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2019) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76:441–451. https://doi.org/10.1007/s00018-018-2940-7

    Article  CAS  PubMed  Google Scholar 

  19. Zheng Y, Li X, Huang Y, Jia L, Li W (2018) Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells. PeerJ 6:e5214. https://doi.org/10.7717/peerj.5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Wang Y, Wang C, Hu JF, Li W (2020) LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet 11:277. https://doi.org/10.3389/fgene.2020.00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tello-Flores VA, Beltrán-Anaya FO, Ramírez-Vargas MA, Esteban-Casales BE, Navarro-Tito N, Alarcón-Romero LDC, Luciano-Villa CA, Ramírez M, Del Moral-Hernández Ó, Flores-Alfaro E (2021) Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int J Mol Sci 22. https://doi.org/10.3390/ijms22147256

  22. Yan C, Chen J, Chen N (2016) Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep 6:22640. https://doi.org/10.1038/srep22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vimalraj S, Subramanian R, Dhanasekaran A (2021) LncRNA MALAT1 promotes tumor angiogenesis by regulating microRNA-150-5p/VEGFA signaling in osteosarcoma: in-vitro and in-vivo analyses. Front Oncol 11:742789. https://doi.org/10.3389/fonc.2021.742789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z (2020) LncRNA MALAT1 targeting miR-124-3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s Disease. J Cell Biochem 121:4838–4848. https://doi.org/10.1002/jcb.29711

    Article  CAS  PubMed  Google Scholar 

  25. Li X (2022) LncRNA metastasis-associated lung adenocarcinoma transcript-1 promotes osteogenic differentiation of bone marrow stem cells and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. J Tissue Eng Regen Med 16:311–329. https://doi.org/10.1002/term.3279

    Article  CAS  PubMed  Google Scholar 

  26. Younes N, Syed N, Yadav SK, Haris M, Abdallah AM, Abu-Madi M (2021) A whole-genome sequencing association study of low bone mineral density identifies new susceptibility loci in the Phase I Qatar Biobank Cohort. J Pers Med 11. https://doi.org/10.3390/jpm11010034

  27. Song C, Guo Y, Chen F, Liu W (2022) lncRNA MALAT1 promotes osteogenic differentiation through the miR-217/AKT3 axis: a possible strategy to alleviate osteoporosis. J Gene Med 24:e3409. https://doi.org/10.1002/jgm.3409

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Xu Z, Wang Y, Song Q, Yin R (2022) LncRNA MALAT1 mediates osteogenic differentiation in osteoporosis by regulating the miR-485-5p/WNT7B axis. Front Endocrinol (Lausanne) 13:922560. https://doi.org/10.3389/fendo.2022.922560

    Article  PubMed  Google Scholar 

  29. Li J, Zhuang H, Wang Z, Cai J, Ma X, Chen W, Jiang X, Zhao D, Hou W, Tao Y (2022) lncRNAs MALAT1 and LINC00657 upstream to miR-214-3p/BMP2 regulate osteogenic differentiation of human mesenchymal stem cells. Mol Biol Rep 49:6847–6857. https://doi.org/10.1007/s11033-022-07136-3

    Article  CAS  PubMed  Google Scholar 

  30. Xiao X, Zhou T, Guo S, Guo C, Zhang Q, Dong N, Wang Y (2017) LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 243:404–412. https://doi.org/10.1016/j.ijcard.2017.05.037

    Article  PubMed  Google Scholar 

  31. Bao M, Liu G, Song J, Gao Y (2020) Long non-coding RNA MALAT1 promotes odontogenic differentiation of human dental pulp stem cells by impairing microRNA-140-5p-dependent downregulation of GIT2. Cell Tissue Res 382:487–498. https://doi.org/10.1007/s00441-020-03246-1

    Article  CAS  PubMed  Google Scholar 

  32. Hua L, Zhang X (2021) MALAT1 regulates osteogenic differentiation of human periodontal ligament stem cells through mediating miR-155-5p/ETS1 axis. Tissue Cell 73:101619. https://doi.org/10.1016/j.tice.2021.101619

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Sheng M, Cao H, Zhang L, Shao W (2023) Decoding the role of long non-coding RNAs in periodontitis: a comprehensive review. Biomed Pharmacother 166:115357. https://doi.org/10.1016/j.biopha.2023.115357

    Article  CAS  PubMed  Google Scholar 

  34. Xia F, Xu Y, Zhang X, Lyu J, Zhao P (2021) Competing endogenous RNA network associated with oxygen-induced retinopathy: expression of the network and identification of the MALAT1/miR-124-3p/EGR1 regulatory axis. Exp Cell Res 408:112783. https://doi.org/10.1016/j.yexcr.2021.112783

    Article  CAS  PubMed  Google Scholar 

  35. Gan L, Leng Y, Min J, Luo XM, Wang F, Zhao J (2022) Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur J Pharmacol 927:174954. https://doi.org/10.1016/j.ejphar.2022.174954

    Article  CAS  PubMed  Google Scholar 

  36. Qadir AS, Um S, Lee H, Baek K, Seo BM, Lee G, Kim GS, Woo KM, Ryoo HM, Baek JH (2015) miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. J Cell Biochem 116:730–742. https://doi.org/10.1002/jcb.25026

    Article  CAS  PubMed  Google Scholar 

  37. Cao Y, Lv Q, Li Y (2021) Astragaloside IV improves tibial defect in rats and promotes proliferation and osteogenic differentiation of hBMSCs through MiR-124-3p.1/STAT3 Axis. J Nat Prod 84:287–297. https://doi.org/10.1021/acs.jnatprod.0c00975

    Article  CAS  PubMed  Google Scholar 

  38. Scalia P, Williams SJ, Fujita-Yamaguchi Y (2023) Human IGF2 gene epigenetic and transcriptional regulation: at the core of developmental growth and tumorigenic behavior. Biomedicines 11. https://doi.org/10.3390/biomedicines11061655

  39. Wang P, Zhang L, Zhang J, Xu G (2022) MicroRNA-124-3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1. Exp Ther Med 23:233. https://doi.org/10.3892/etm.2022.11157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen W, Chen M, Xu Y, Chen X, Zhou P, Zhao X, Pang F, Liang W (2018) Long non-coding RNA THOR promotes human osteosarcoma cell growth in vitro and in vivo. Biochem Biophys Res Commun 499:913–919. https://doi.org/10.1016/j.bbrc.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  41. Qu Y, Pan S, Kang M, Dong R, Zhao J (2016) MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumour Biol 37:5275–5284. https://doi.org/10.1007/s13277-015-4389-8

    Article  CAS  PubMed  Google Scholar 

  42. Kang H, Sung J, Jung HM, Woo KM, Hong SD, Roh S (2012) Insulin-like growth factor 2 promotes osteogenic cell differentiation in the parthenogenetic murine embryonic stem cells. Tissue Eng A 18:331–341. https://doi.org/10.1089/ten.TEA.2011.0074

    Article  CAS  Google Scholar 

  43. Hardouin SN, Guo R, Romeo PH, Nagy A, Aubin JE (2011) Impaired mesenchymal stem cell differentiation and osteoclastogenesis in mice deficient for Igf2-P2 transcripts. Development 138:203–213. https://doi.org/10.1242/dev.054916

    Article  CAS  PubMed  Google Scholar 

  44. Yakar S, Werner H, Rosen CJ (2018) Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 61:T115–T137. https://doi.org/10.1530/jme-17-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diao S, Yang H, Cao Y, Yang D, Fan Z (2020) IGF2 enhanced the osteo-/dentinogenic and neurogenic differentiation potentials of stem cells from apical papilla. J Oral Rehabil 47(Suppl 1):55–65. https://doi.org/10.1111/joor.12859

    Article  CAS  PubMed  Google Scholar 

  46. Zheng Y, Li X, Huang Y, Jia L, Li W (2017) The circular RNA landscape of periodontal ligament stem cells during osteogenesis. J Periodontol 88:906–914. https://doi.org/10.1902/jop.2017.170078

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, Wang X, Chang X, Guo J, Gui S (2023) Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed Pharmacother 162:114688. https://doi.org/10.1016/j.biopha.2023.114688

    Article  CAS  PubMed  Google Scholar 

  49. Sedghi LM, Bacino M, Kapila YL (2021) Periodontal disease: the good, the bad, and the unknown. Front Cell Infect Microbiol 11:766944. https://doi.org/10.3389/fcimb.2021.766944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, Liu X, Niu S, Qu G, Lan J, Li J, Yang C, Zou D (2021) Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front Cell Dev Biol 9:663037. https://doi.org/10.3389/fcell.2021.663037

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen L, Zhu S, Guo S, Tian W (2023) Mechanisms and clinical application potential of mesenchymal stem cells-derived extracellular vesicles in periodontal regeneration. Stem Cell Res Ther 14:26. https://doi.org/10.1186/s13287-023-03242-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jiang Z, Hua Y (2016) Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation. Arch Oral Biol 72:8–13. https://doi.org/10.1016/j.archoralbio.2016.08.008

    Article  CAS  PubMed  Google Scholar 

  53. Singh A, Gill G, Kaur H, Amhmed M, Jakhu H (2018) Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod 19:18. https://doi.org/10.1186/s40510-018-0216-2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Komori T (2018) Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol 149:313–323. https://doi.org/10.1007/s00418-018-1640-6

    Article  CAS  PubMed  Google Scholar 

  55. Liu JL, Liu YS, Zheng MJ, He HY (2022) The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol Biol Rep 49:2443–2453. https://doi.org/10.1007/s11033-021-07013-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Musolino C, Oteri G, Allegra A, Mania M, D’Ascola A, Avenoso A, Innao V, Allegra AG, Campo S (2018) Altered microRNA expression profile in the peripheral lymphoid compartment of multiple myeloma patients with bisphosphonate-induced osteonecrosis of the jaw. Ann Hematol 97:1259–1269. https://doi.org/10.1007/s00277-018-3296-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by grants from the National Natural Science Foundation of China, Changchun, China (No.82370934).

Author information

Authors and Affiliations

Authors

Contributions

Nan Gu: Conducted Experiments and Data Analysis.

Yao Wang: Conducted Literature Review and Manuscript Writing.

Lingfeng Li: Picture Production.

Xin Sui:Formal Analysis.

Zhihui Liu: Oversaw Project Design and Supervision.

Corresponding author

Correspondence to Zhihui Liu.

Ethics declarations

Ethics approval

The experiment was conducted under the supervision of the Institutional Animal care and Use Committee of Jilin University. The number of permit was SY202104016.

Consent to participate

Not applicable.

Conflict of interest

The authors declare that there is no conflict of interest.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. MALAT1 Enhances Osteogenesis: lncRNA MALAT1 positively regulates osteogenic differentiation in PDLSCs, highlighting its role in bone regeneration.

2. Unveiling the Regulatory Axis: miR-124-3p targets IGF2BP1 to modulate osteogenic potential, unveiling a novel regulatory axis in periodontal tissue repair.

3. Therapeutic Insights for Bone Defects: Insights into lncRNA-mediated osteogenesis provide potential avenues for innovative therapies in periodontal regeneration and bone defect management.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, N., Wang, Y., Li, L. et al. The mechanism of lncRNA MALAT1 targeting the miR-124-3p/IGF2BP1 axis to regulate osteogenic differentiation of periodontal ligament stem cells. Clin Oral Invest 28, 219 (2024). https://doi.org/10.1007/s00784-024-05616-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00784-024-05616-3

Keywords

Navigation