Skip to main content

Advertisement

Log in

Absence of melatonin during development impairs craniofacial and dental onset in rats

  • Research
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

Herein, we evaluated pinealectomy-induced melatonin absence to determine its effects on craniofacial and dental development in the offspring.

Design

Female Wistar rats in three groups, i.e., intact pregnant rats, pinealectomized pregnant rats (PINX), and pinealectomized pregnant rats subjected to oral melatonin replacement therapy, were crossed 30 days after surgery. The heads of 7-day-old pups were harvested for cephalometric and histological analyses, and maxillae and incisors were collected for mRNA expression analysis.

Results

The PINX pups exhibited a reduction in neurocranial and facial parameters such as a decrease in alveolar bone area, incisor size and proliferation, and an increase in odontoblasts and the dentin layer. Based on incisor mRNA expression analysis, we found that Dmp1 expression was upregulated, whereas Col1a1 expression was downregulated. Maxillary mRNA expression revealed that Rankl expression was upregulated, whereas that of Opn and Osx was downregulated.

Conclusion

Our results demonstrated that the absence of maternal melatonin during early life could affect dental and maxillary development in offspring, as well as delay odontogenesis and osteogenesis in maxillary tissues.

Clinical relevance

Our findings suggest that disruptions or a lack of melatonin during pregnancy may cause changes in craniofacial and dental development, at least in animal experiments; however, in humans, these feedings are still poorly understood, and thus careful evaluations of melatonin levels in humans need to be investigated in craniofacial alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA (2014) Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update 20:293–307. https://doi.org/10.1093/humupd/dmt054

    Article  PubMed  Google Scholar 

  2. Valenzuela FJ, Vera J, Venegas C, Pino F, Lagunas C (2015) Circadian System and Melatonin Hormone: Risk Factors for Complications during Pregnancy. Obstet Gynecol Int 2015:825802. https://doi.org/10.1155/2015/825802

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hardeland R (2008) Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell Mol Life Sci 65:2001–2018. https://doi.org/10.1007/s00018-008-8001-x

    Article  PubMed  Google Scholar 

  4. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381. https://doi.org/10.1111/jpi.12137

    Article  PubMed  Google Scholar 

  5. Buonfiglio D, Parthimos R, Dantas R et al (2018) Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats. Front Endocrinol (Lausanne) 9:122. https://doi.org/10.3389/fendo.2018.00122

    Article  PubMed  Google Scholar 

  6. Ferreira DS, Amaral FG, Mesquita CC et al (2012) Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. PLoS One 7:e38795. https://doi.org/10.1371/journal.pone.0038795

    Article  PubMed  PubMed Central  Google Scholar 

  7. Motta-Teixeira LC, Machado-Nils AV, Battagello DS et al (2018) The absence of maternal pineal melatonin rhythm during pregnancy and lactation impairs offspring physical growth, neurodevelopment, and behavior. Horm Behav 105:146–156. https://doi.org/10.1016/j.yhbeh.2018.08.006

    Article  PubMed  Google Scholar 

  8. Tao J, Zhai Y, Park H et al (2016) Circadian Rhythm Regulates Development of Enamel in Mouse Mandibular First Molar. PLoS One 11:e0159946. https://doi.org/10.1371/journal.pone.0159946

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng L, Ehardt L, McAlpin B et al (2014) The tick tock of odontogenesis. Exp Cell Res 325:83–89. https://doi.org/10.1016/j.yexcr.2014.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumasaka S, Shimozuma M, Kawamoto T et al (2010) Possible involvement of melatonin in tooth development: expression of melatonin 1a receptor in human and mouse tooth germs. Histochem Cell Biol 133:577–584. https://doi.org/10.1007/s00418-010-0698-6

    Article  PubMed  Google Scholar 

  11. Sharan K, Lewis K, Furukawa T, Yadav VK (2017) Regulation of bone mass through pineal-derived melatonin-MT2 receptor pathway. J Pineal Res 63. https://doi.org/10.1111/jpi.12423

  12. Liu J, Huang F, He HW (2013) Melatonin effects on hard tissues: bone and tooth. Int J Mol Sci 14:10063–10074. https://doi.org/10.3390/ijms140510063

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Zhou H, Fan W et al (2013) Melatonin influences proliferation and differentiation of rat dental papilla cells in vitro and dentine formation in vivo by altering mitochondrial activity. J Pineal Res 54:170–178. https://doi.org/10.1111/jpi.12002

    Article  PubMed  Google Scholar 

  14. Liu Q, Fan W, He Y et al (2017) Effects of melatonin on the proliferation and differentiation of human dental pulp cells. Arch Oral Biol 83:33–39. https://doi.org/10.1016/j.archoralbio.2017.06.034

    Article  PubMed  Google Scholar 

  15. Maria S, Samsonraj RM, Munmun F et al (2018) Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. J Pineal Res 64. https://doi.org/10.1111/jpi.12465

  16. Tian Y, Gong Z, Zhao R, Zhu Y (2021) Melatonin inhibits RANKLinduced osteoclastogenesis through the miR882/Reverbalpha axis in Raw264.7 cells. Int J Mol Med 47:633–642. https://doi.org/10.3892/ijmm.2020.4820

    Article  PubMed  Google Scholar 

  17. Udagawa N, Koide M, Nakamura M et al (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 39:19–26. https://doi.org/10.1007/s00774-020-01162-6

    Article  PubMed  Google Scholar 

  18. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  PubMed  Google Scholar 

  19. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99:1233–1239. https://doi.org/10.1002/jcb.20958

    Article  PubMed  Google Scholar 

  20. Yu T, Klein OD (2020) Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development 147. https://doi.org/10.1242/dev.184754

  21. Chen S, Gluhak-Heinrich J, Wang YH et al (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88:904–909. https://doi.org/10.1177/0022034509342873

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoffman RA, Reiter RJ (1965) Rapid pinealectomy in hamsters and other small rodents. Anat Rec 153:19–21. https://doi.org/10.1002/ar.1091530103

    Article  PubMed  Google Scholar 

  23. Calsa B, Masiero BC, Esquisatto MAM, Catisti R, Santamaria M Jr (2020) Gestational protein restriction alters the RANKL/OPG system in the dental germ of offsprings. J Oral Biol Craniofac Res 10:743–746. https://doi.org/10.1016/j.jobcr.2020.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calsa B, Bortolanca TJ, Masiero BC et al (2022) Maxillary and dental development in the offspring of protein-restricted female rats. Eur J Oral Sci. https://doi.org/10.1111/eos.12895e12895.10.1111/eos.12895

    Article  PubMed  Google Scholar 

  25. Cesani MF, Orden AB, Oyhenart EE, Zucchi M, Mune MC, Pucciarelli HM (2006) Growth of functional cranial components in rats submitted to intergenerational undernutrition. J Anat 209:137–147. https://doi.org/10.1111/j.1469-7580.2006.00603.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quintero FA, Castro LE, Luna ME et al (2012) Growth of functional cranial components in rats with intrauterine growth retardation after treatment with growth hormone. Eur J Orthod 34:710–718. https://doi.org/10.1093/ejo/cjr101

    Article  PubMed  Google Scholar 

  27. Luna ME, Quintero FA, Cesani MF et al (2014) Craniofacial catch-up growth in intrauterine growth retarded rats following postnatal nutritional rehabilitation. Clin Exp Obstet Gynecol 41:530–533

    Article  PubMed  Google Scholar 

  28. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160. https://doi.org/10.1177/096228029900800204

    Article  PubMed  Google Scholar 

  29. Kim HY (2013) Statistical notes for clinical researchers: Evaluation of measurement error 2: Dahlberg’s error, Bland-Altman method, and Kappa coefficient. Restor Dent Endod 38:182–185. https://doi.org/10.5395/rde.2013.38.3.182

    Article  PubMed  PubMed Central  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  Google Scholar 

  31. Cohen J (1992) A power primer. Psychol Bull 112:155–159. https://doi.org/10.1037//0033-2909.112.1.155

    Article  PubMed  Google Scholar 

  32. Bellavia SL, Carpentieri AR, Vaque AM, Macchione AF, Vermouth NT (2006) Pup circadian rhythm entrainment–effect of maternal ganglionectomy or pinealectomy. Physiol Behav 89:342–349. https://doi.org/10.1016/j.physbeh.2006.06.018

    Article  PubMed  Google Scholar 

  33. Yellon SM, Tamarkin L, Goldman BD (1985) Maturation of the pineal melatonin rhythm in long- and short-day reared Djungarian hamsters. Experientia 41:651–652. https://doi.org/10.1007/BF02007704

    Article  PubMed  Google Scholar 

  34. Ivanov DO, Evsyukova II, Mironova ES, Polyakova VO, Kvetnoy IM, Nasyrov RA (2021) Maternal melatonin deficiency leads to endocrine pathologies in children in early ontogenesis. Int J Mol Sci 22:2058. https://doi.org/10.3390/ijms22042058

  35. Varcoe TJ, Wight N, Voultsios A, Salkeld MD, Kennaway DJ (2011) Chronic phase shifts of the photoperiod throughout pregnancy programs glucose intolerance and insulin resistance in the rat. PLoS One 6:e18504. https://doi.org/10.1371/journal.pone.0018504

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boyce BF (2013) Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res 92:860–867. https://doi.org/10.1177/0022034513500306

    Article  PubMed  PubMed Central  Google Scholar 

  37. Walsh MC, Choi Y (2014) Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Front Immunol 5:511. https://doi.org/10.3389/fimmu.2014.00511

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lu X, Yu S, Chen G et al (2021) Insight into the roles of melatonin in bone tissue and bonerelated diseases (Review). Int J Mol Med 47. https://doi.org/10.3892/ijmm.2021.4915

  39. Munmun F, Witt-Enderby PA (2021) Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 71:e12749. https://doi.org/10.1111/jpi.12749

    Article  PubMed  Google Scholar 

  40. Dalla-Costa K, Yurtsever FV, Penteado J, Martinez EF, Sperandio M, Peruzzo DC (2020) Melatonin has a stimulatory effect on osteoblasts by upregulating col-i and opn expression/secretion. Acta Odontol Latinoam 33:125

    Article  PubMed  Google Scholar 

  41. Tresguerres IF, Tamimi F, Eimar H et al (2014) Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 17:341–346. https://doi.org/10.1089/rej.2013.1542

    Article  PubMed  Google Scholar 

  42. Han Y, Kim YM, Kim HS, Lee KY (2017) Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep 7:5716. https://doi.org/10.1038/s41598-017-06304-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Icer MA, Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59:17–24. https://doi.org/10.1016/j.clinbiochem.2018.07.003

    Article  PubMed  Google Scholar 

  44. Ogata Y (2008) Bone sialoprotein and its transcriptional regulatory mechanism. J Periodontal Res 43:127–135. https://doi.org/10.1111/j.1600-0765.2007.01014.x

    Article  PubMed  Google Scholar 

  45. Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354. https://doi.org/10.1007/s00223-013-9698-6

    Article  PubMed  Google Scholar 

  46. Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG (1992) Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res 281:275–294. https://pubmed.ncbi.nlm.nih.gov/1499220/

  47. Matsumura H, Ogata Y (2014) Melatonin regulates human bone sialoprotein gene transcription. J Oral Sci 56:67–76. https://doi.org/10.2334/josnusd.56.67

    Article  PubMed  Google Scholar 

  48. Couve E, Osorio R, Schmachtenberg O (2013) The amazing odontoblast: activity, autophagy, and aging. J Dent Res 92:765–772. https://doi.org/10.1177/0022034513495874

    Article  PubMed  Google Scholar 

  49. Aplin HM, Hirst KL, Crosby AH, Dixon MJ (1995) Mapping of the human dentin matrix acidic phosphoprotein gene (DMP1) to the dentinogenesis imperfecta type II critical region at chromosome 4q21. Genomics 30:347–349. https://doi.org/10.1006/geno.1995.9867

    Article  PubMed  Google Scholar 

  50. Zhan FL, Liu XY, Wang XB (2018) The Role of MicroRNA-143-5p in the Differentiation of Dental Pulp Stem Cells into Odontoblasts by Targeting Runx2 via the OPG/RANKL Signaling Pathway. J Cell Biochem 119:536–546. https://doi.org/10.1002/jcb.26212

    Article  PubMed  Google Scholar 

  51. Feng JQ, Luan X, Wallace J et al (1998) Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem 273:9457–9464. https://doi.org/10.1074/jbc.273.16.9457

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sra. Mirelle Oliveira for radiographic image assistance; Me. Lucas Eduardo Orzari and Sra. Renata Barbieri provided technical assistance.

Funding

This work was supported by grants from the Hermínio Ometto Foundation-FHO and the São Paulo Research Foundation (FAPESP - 16/23237-4). T.J. Bortolança was the recipient of an undergraduate fellowship from Programa Iniciação Científica do Conselho Nacional de Pesquisa (PIBIC/CNPq - 143262/2021-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B Calsa, LS de Camargo, FG do Amaral, M Santamaria-Jr; Data curation: B Calsa; Formal analysis: B Calsa, LS de Camargo, CA de Oliveira, R Catisti, FG do Amaral, M Santamaria-Jr; Funding acquisition: M Santamaria-Jr; Investigation: B Calsa, LS de Camargo, TJ Bortolança, CA de Oliveira; Methodology: B Calsa, LS de Camargo, R Catisti, FG do Amaral, M Santamaria-Jr; Project administration: FG do Amaral, M Santamaria-Jr; Supervision: R Catisti, FG do Amaral, M Santamaria-Jr; Writing - original draft: B Calsa, LS de Camargo, TJ Bortolança; Writing - review & editing: B Calsa, CA de Oliveira, R Catisti, FG do Amaral, M Santamaria-Jr.

Corresponding author

Correspondence to Milton Santamaria-Jr.

Ethics declarations

Ethical approval

All the protocols followed by this research were previously approved by the Ethical Committee in Animal Experimentation from the Federal University of São Paulo, Brazil (#8074220415).

Competing interests

None.

Conflicts of Interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calsa, B., de Camargo, L.S., Bortolança, T.J. et al. Absence of melatonin during development impairs craniofacial and dental onset in rats. Clin Oral Invest 27, 5353–5365 (2023). https://doi.org/10.1007/s00784-023-05155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-023-05155-3

Keywords

Navigation