Skip to main content

Advertisement

Log in

Role of Osteopontin in Modulation of Hydroxyapatite Formation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The presence of osteopontin (OPN) at high levels in both mineralized tissues such as bone and ectopic calcifications such as atherosclerotic plaque presents a conundrum: is OPN a promoter or inhibitor of hydroxyapatite (HA) formation? In vitro studies show that OPN adsorbs tightly to HA and is a potent inhibitor of crystal growth. Although the mechanism of the OPN–HA interaction is not fully understood, it is probably electrostatic in nature. Phosphorylation enhances OPN’s ability to adsorb to and inhibit the growth of HA crystals, although other anionic groups also contribute to these properties. Recent findings suggest that OPN is an intrinsically unordered protein and that its lack of folded structure facilitates the protein’s adsorption by allowing multiple binding geometries and the sequential formation of ionic bonds with Ca2+ ions of the crystal surface. By analogy with other biominerals, it is likely that adsorption of OPN to HA results in “pinning” of growth steps. The abundance of OPN at sites of ectopic calcification reflects upregulation of the protein in response to crystal formation or even in response to elevated phosphate levels. Therefore, it appears that OPN is one of a group of proteins that function to prevent crystal formation in soft tissues. The role of OPN in bone mineralization, if any, is less clear. However, it is possible that it modulates HA formation, either by preventing crystal growth in “inappropriate” areas such as the osteoid seam or by regulating crystal growth habit (size and shape).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Herring GM, Kent PW (1963) Some studies on mucosubstances of bovine cortical bone. Biochemistry 89:405–414

    CAS  Google Scholar 

  2. Franzén A, Heinegård D (1985) Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemistry 232:715–724

    Google Scholar 

  3. Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Bhown M, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of phosphorylated glycoprotein from rat bone. J Biol Chem 262:2900–2907

    PubMed  CAS  Google Scholar 

  4. Oldberg A, Franzén A, Heinegård D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Article  PubMed  CAS  Google Scholar 

  5. Sørensen ES, Højrup P, Petersen TE (1995) Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci 4:2040–2049

    Article  PubMed  Google Scholar 

  6. Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G (2005) Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry 44:6990–7003

    Article  PubMed  CAS  Google Scholar 

  7. Christensen B, Petersen TE, Sorensen ES (2008) Post-translational modification and proteolytic processing of urinary osteopontin. Biochem J 411:53–61

    Article  PubMed  CAS  Google Scholar 

  8. Masuda K, Takahashi N, Tsukamoto Y, Honma H, Kohri K (2000) N-Glycan structure of an osteopontin from human bone. Biochem Biophys Res Commun 268:814–817

    Article  PubMed  CAS  Google Scholar 

  9. Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Mäenpää PH (1999) Cross-linking of osteopontin by tissue transglutaminase increases its collagen binding properties. J Biol Chem 274:1729–1735

    Article  PubMed  CAS  Google Scholar 

  10. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, Boskey AL (2005) Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int 77:45–54

    Article  PubMed  CAS  Google Scholar 

  11. Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS (2001) Flexible structures of SIBLING proteins, bone sialoprotein and osteopontin. Biochem Biophys Res Commun 280:460–465

    Article  PubMed  CAS  Google Scholar 

  12. Azzopardi PV, O’Young J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2010) Roles of charge and conformation in protein–crystal interactions. PLoS ONE 5:e9330

    Article  PubMed  Google Scholar 

  13. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  14. Zhang Q, Domenicucci C, Goldberg HA, Wrana JL, Sodek J (1990) Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. J Biol Chem 265:7583–7589

    PubMed  CAS  Google Scholar 

  15. Barros NM, Hoac B, Neves RL, Addison WN, Assis DM, Murshed M, Carmona AK, McKee MD (2012) Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res. doi:10.1002/jbmr.1766

    Google Scholar 

  16. Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    Article  PubMed  CAS  Google Scholar 

  17. Weiner S, Price PA (1986) Disaggregation of bone into crystals. Calcif Tissue Int 39:365–375

    Article  PubMed  CAS  Google Scholar 

  18. Nomura S, Wills AJ, Edwards DR, Heath JK, Hogan BLM (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol 106:441–450

    Article  PubMed  CAS  Google Scholar 

  19. Kohri K, Suzuki Y, Yoshida K, Yamamoto K, Amasaki N, Yamate T, Umekawa T, Iguchi M, Sinohara H, Kurita T (1992) Molecular cloning and sequencing of cDNA encoding urinary stone protein, which is identical to osteopontin. Biochem Biophys Res Commun 184:859–864

    Article  PubMed  CAS  Google Scholar 

  20. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    Article  PubMed  CAS  Google Scholar 

  21. Brown LF, Berse B, Van De Water L, Papadopoulos-Sergious A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol Biol Cell 3:1169–1180

    Article  PubMed  CAS  Google Scholar 

  22. Senger DR, Perruzzi CA, Papadopoulos A, Tenen DG (1989) Purification of human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim Biophys Acta 996:43–48

    Article  PubMed  CAS  Google Scholar 

  23. Min W, Shiraga H, Chalko C, Goldfarb S, Krishna GG, Hoyer JR (1998) Quantitative studies of human urinary excretion of uropontin. Kidney Int 53:189–193

    Article  PubMed  CAS  Google Scholar 

  24. Chen J, McKee MD, Nanci A, Sodek J (1994) Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 26:67–78

    PubMed  CAS  Google Scholar 

  25. McKee MD, Nanci A (1995) Postembedding colloidal-gold immunocytochemistry of noncollogenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 31:44–62

    Article  PubMed  CAS  Google Scholar 

  26. Hirota S, Asada H, Kohri K, Tsukamoto Y, Ito A, Yoshikawa K, Xu Z, Nomura S, Kitamura Y (1995) Possible role of osteopontin in deposition of calcium phosphate in human pilomatricomas. J Invest Dermatol 105:138–142

    Article  PubMed  CAS  Google Scholar 

  27. Kohri K, Nomura S, Kitamura Y, Nagata T, Yoshioka K, Iguchi M, Yamate T, Umekawa T, Suzuki Y, Sinohara H, Kurita T (1993) Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem 268:15180–15184

    PubMed  CAS  Google Scholar 

  28. Beck GR, Zerle B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97:8352–8357

    Article  PubMed  CAS  Google Scholar 

  29. Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731

    Article  PubMed  CAS  Google Scholar 

  30. Chiba S, Okamoto H, Kon S, Kimura C, Murakami M, Inobe M, Matsui Y, Sugawara T, Shimizu T, Uede T, Kitabatake A (2002) Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 16:111–117

    Article  PubMed  Google Scholar 

  31. Hamamoto S, Nomura S, Yasui T, Okada A, Hirose M, Shimizu H, Itoh Y, Tozawa K, Kohri K (2010) Effects of impaired functional domains of osteopontin on renal crystal formation: analyses of OPN transgenic and OPN knockout mice. J Bone Miner Res 25:2436–2447

    CAS  Google Scholar 

  32. Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111

    Article  PubMed  CAS  Google Scholar 

  33. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71:145–154

    Article  PubMed  CAS  Google Scholar 

  34. Harmey D, Johnson KA, Zelken J, Camacho NP, Hoylaerts MF, Noda M, Terkeltaub R, Millan JL (2006) Elevated skeletal osteopontin levels contribute to the hypophosphatasia phenotype in Akp2−/− mice. J Bone Miner Res 21:1377–1386

    Article  PubMed  CAS  Google Scholar 

  35. McKee MD, Nanci A (1996) Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech 33:141–164

    Article  PubMed  CAS  Google Scholar 

  36. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BLM (1998) Altered wound healing in mice lacking a functional osteopontin gene (spp 1). J Clin Invest 101:1468–1478

    PubMed  CAS  Google Scholar 

  37. Wesson JA, Johnson RJ, Mazzali M, Beshensky AM, Stietz S, Giachelli C, Liaw L, Alpers CE, Couser WG, Kleinman JG, Hughes J (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139–147

    Article  PubMed  CAS  Google Scholar 

  38. Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046

    Article  PubMed  CAS  Google Scholar 

  39. Mo L, Liaw L, Evan AP, Sommer AJ, Lieske JC, Wu XR (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm-Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935–F1943

    Article  PubMed  CAS  Google Scholar 

  40. Speer MY, McKee MD, Guldberg RE, Liaw L, Yang HY, Tung E, Karsenty G, Giachelli CM (2002) Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein–deficient mice: evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J Exp Med 196:1047–1055

    Article  PubMed  CAS  Google Scholar 

  41. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, Muller-Esterl W, Schinke T, Jahnen-Dechent W (2003) The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 112:357–366

    PubMed  Google Scholar 

  42. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW (1993) Osteopontin–hydroxyapatite interactions in vitro. Inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner 22:147–159

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37

    Article  PubMed  CAS  Google Scholar 

  44. Silverman LD, Saadia M, Ishal JS, Tishbi N, Leiderman E, Kuyunov I, Recca B, Reitblat C, Viswanathan R (2010) Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences. Langmuir 26:9899–9904

    Article  PubMed  CAS  Google Scholar 

  45. Addison WN, Masica DL, Gray JJ, McKee MD (2010) Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25:695–705

    Article  PubMed  CAS  Google Scholar 

  46. Fujisawa R, Kuboki Y (1991) Preferential adsorption of dentin and bone acidic proteins on the (100) face of hydroxyapatite crystals. Biochim Biophys Acta 1075:56–60

    Article  PubMed  CAS  Google Scholar 

  47. Hoang QQ, Sicheri F, Howard AJ, Yang DS (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425:977–980

    Article  PubMed  CAS  Google Scholar 

  48. Huq NL, Cross KJ, Reynolds EC (2000) Molecular modelling of a multiphosphorylated sequence motif bound to hydroxyapatite surfaces. J Mol Model 6:35–47

    Article  CAS  Google Scholar 

  49. Grohe B, O’Young J, Ionescu A, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK (2007) Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. J Am Chem Soc 129:14946–14951

    Article  PubMed  CAS  Google Scholar 

  50. Addison WN, Azari F, Sorensen ES, Kaartinen MT, McKee MD (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883

    Article  PubMed  CAS  Google Scholar 

  51. Harding JH, Duffy DM, Sushko ML, Rodger PM, Quigley D, Elliott JA (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108:4823–4854

    Article  PubMed  CAS  Google Scholar 

  52. O’Young J, Liao YY, Xiao YZ, Jalkanen J, Lajoie G, Karttunen M, Goldberg HA, Hunter GK (2011) Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J Am Chem Soc 133:18406–18412

    Article  PubMed  Google Scholar 

  53. Wada T, McKee MD, Steitz S, Giachelli CM (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178

    Article  PubMed  CAS  Google Scholar 

  54. Li S, Wang L (2012) Phosphorylated osteopontin peptides inhibit crystallization by resisting the aggregation of calcium phosphate nanoparticles. Cryst Eng Comm 14:8037–8043

    Article  CAS  Google Scholar 

  55. Hunter GK, Kyle CL, Goldberg HA (1994) Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J 300:723–728

    PubMed  CAS  Google Scholar 

  56. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317:59–64

    PubMed  CAS  Google Scholar 

  57. Boskey AL, Christensen B, Taleb H, Sorensen ES (2012) Post-translational modification of osteopontin: effects on in vitro hydroxyapatite formation and growth. Biochem Biophys Res Commun 419:333–338

    Article  PubMed  CAS  Google Scholar 

  58. Tomson MB, Nancollas GH (1978) Mineralization kinetics: a constant composition approach. Science 200:1059–1060

    Article  PubMed  CAS  Google Scholar 

  59. Beshensky AM, Wesson JA, Worcester EM, Sorokina EJ, Snyder CJ, Kleinman JG (2001) Effects of urinary macromolecules on hydroxyapatite crystal formation. J Am Soc Nephrol 12:2108–2116

    PubMed  CAS  Google Scholar 

  60. Kumura H, Minato N, Shimazaki K (2006) Inhibitory activity of bovine milk osteopontin and its fragments on the formation of calcium phosphate precipitates. J Dairy Res 73:449–453

    Article  PubMed  CAS  Google Scholar 

  61. Linde A, Lussi A, Crenshaw MA (1989) Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 44:286–295

    Article  PubMed  CAS  Google Scholar 

  62. Speer MY, Chien YC, Quan M, Yang HY, Vali H, McKee MD, Giachelli CM (2005) Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro. Cardiovasc Res 66:324–333

    Article  PubMed  CAS  Google Scholar 

  63. Jono S, Peinado C, Giachelli CM (2000) Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem 275:20197–20203

    Article  PubMed  CAS  Google Scholar 

  64. Evans JS (2003) “Apples” and “oranges”: comparing the structural aspects of biomineral- and ice-interaction proteins. Curr Opin Colloid Interface Sci 8:48–54

    Article  CAS  Google Scholar 

  65. Hunter GK, O’Young J, Grohe B, Karttunen M, Goldberg HA (2010) The flexible polyelectrolyte hypothesis of protein–biomineral interaction. Langmuir 26:18639–18646

    Article  PubMed  CAS  Google Scholar 

  66. Vekilov PG (2007) What determines the rate of growth of crystals from solution? Cryst Growth Des 7:2796–2810

    Article  CAS  Google Scholar 

  67. Weaver ML, Qiu SR, Hoyer JR, Casey WH, Nancollas GH, De Yoreo JJ (2009) Surface aggregation of urinary proteins and aspartic acid–rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy. Calcif Tissue Int 84:462–473

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme K. Hunter.

Additional information

The author has stated that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, G.K. Role of Osteopontin in Modulation of Hydroxyapatite Formation. Calcif Tissue Int 93, 348–354 (2013). https://doi.org/10.1007/s00223-013-9698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9698-6

Keywords

Navigation