Skip to main content
Log in

Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Cytoglobin (Cgb) is a member of hemoprotein family with roles in NO metabolism, fibrosis, and tumourigenesis. Similar to other hemoproteins, Cgb structure and functions are markedly influenced by distal key residues. The sixth ligand His81 (E7) is crucial to exogenous ligand binding, heme pocket conformation, and physiological roles of this protein. However, the effects of other key residues on heme pocket and protein biological functions are not well known. In this work, a molecular dynamics (MD) simulation study of two single mutants in CO-ligated Cgb (L46FCgbCO and L46VCgbCO) and two double mutants (L46FH81QCgbCO and L46VH81QCgbCO) was conducted to explore the effects of the key distal residues Leu46(B10) and His81(E7) on Cgb structure and functions. Results indicated that the distal mutation of B10 and E7 affected CgbCO dynamic properties on loop region fluctuation, internal cavity rearrangement, and heme motion. The distal conformation change was reflected by the distal key residues Gln62 (CD3) and Arg84(E10). The hydrogen bond between heme propionates with CD3 or E10 residues were evidently influenced by B10/E7 mutation. Furthermore, heme pocket rearrangement was also observed based on the distal pocket volume and occurrence rate of inner cavities. The mutual effects of B10 and E7 residues on protein conformational rearrangement and other dynamic features were expressed in current MD studies of CgbCO and its distal mutants, suggesting their crucial role in heme pocket stabilization, ligand binding, and Cgb biological functions.

Graphical abstract

The mutation of distal B10 and E7 residues affects the dynamic features of carboxy cytoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Burmester T, Ebner B, Weich B, Hankeln T (2002) Mol Biol Evol 19:416–421

    Article  CAS  PubMed  Google Scholar 

  2. Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) J Biol Chem 276:47744–47745

    Article  CAS  Google Scholar 

  3. Oleksiewicz U, Liloglou T, Field JK, Xinarianos G (2011) Cell Mol Life Sci 68:3869–3883

    Article  CAS  PubMed  Google Scholar 

  4. Trent JT, Hargrove MS (2002) J Biol Chem 277:19538–19545

    Article  CAS  PubMed  Google Scholar 

  5. Gardner AM, Cook MR, Gardner PR (2010) J Biol Chem 285:23850–23857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li H, Hemann C, Abdelghany TM, El-Mahdy MA, Zweier JL (2012) J Biol Chem 287:36623–36633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sawai H, Makino M, Mizutani Y, Ohta T, Sugimoto H, Uno T, Kawada N, Yoshizato K, Kitagawa T, Shiro Y (2005) Biochemistry 44:13257–13265

    Article  CAS  PubMed  Google Scholar 

  8. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, De Sanctis D, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) J Inorg Biochem 99:110–119

    Article  CAS  PubMed  Google Scholar 

  9. Lv Y, Wang Q, Diao Y, Xu R (2008) Curr Gene Ther 8:287–294

    Article  PubMed  Google Scholar 

  10. Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C, Thunnissen FB, Wistuba II, Czerniak B, Frenkel E, Roth JA, Liloglou T, Xinarianos G, Field JK, Minna JD, Gazdar AF (2008) Cancer Res 68:7448–7456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu R, Harrison PM, Chen M, Li L, Tsui TY, Fung PC, Cheung PT, Wang G, Li H, Diao Y, Krissansen GW, Xu S, Farzaneh F (2006) Mol Ther 13:1093–1100

    Article  CAS  PubMed  Google Scholar 

  12. Thuy LTT, Matsumoto Y, Thuy TTV, Hai H, Suoh M, Urahara Y, Motoyama H, Fujii H, Tamori A, Kubo S, Takemura S, Morita T, Yoshizato K, Kawada N (2015) Am J Pathol 185:1045–1060

    Article  CAS  PubMed  Google Scholar 

  13. Burmester T, Hankeln T (2014) Acta Physiol 211:501–514

    Article  CAS  Google Scholar 

  14. Oleksiewicz U, Liloglou T, Tasopoulou KM, Daskoulido N, Bryan J, Gosney JR, Field JK, Xinarianos G (2013) Hum Mol Genet 22:3207–3217

    Article  CAS  PubMed  Google Scholar 

  15. Makino M, Sawai H, Shiro Y, Sugimoto H (2011) Proteins 79:1143–1153

    Article  CAS  PubMed  Google Scholar 

  16. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) EMBO Rep 3:1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) J Mol Biol 336:917–927

    Article  PubMed  Google Scholar 

  18. Smagghe BJ, Sarath G, Ross E, Hilbert JL, Hargrove MS (2006) Biochemistry 45:561–570

    Article  CAS  PubMed  Google Scholar 

  19. Gabba M, Abbruzzetti S, Spyrakis F, Forti F, Bruno S, Mozzarelli A, Luque FJ, Viappiani C, Cozzini P, Nardini M, Germani F, Bolognesi M, Moens L, Dewilde S (2013) PLoS ONE 8:e49770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ioanitescu AI, Van Doorslaer S, Dewilde S, Endeward B, Moens L (2007) Mol Phys 105:2073–2086

    Article  CAS  Google Scholar 

  21. Witmer JR, University IS (2007) Role of Leu(B10) in cytoglobin and comparison of direct and indirect measurements of hexacoordinate hemoglobin ligand affinity. Iowa: Iowa State University

  22. Arredondo-Peter R, Hargrove MS, Moran JF, Sarath G, Klucas RV (1998) Plant Physiol 118:1121–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smagghe BJ, Kundu S, Hoy JA, Halder P, Weiland TR, Savage A, Venugopal A, Goodman M, Premer S, Hargrove MS (2006) Biochemistry 45:9735–9745

    Article  CAS  PubMed  Google Scholar 

  24. Srajer V, Ren Z, Teng TY, Schmidt M, Ursby T, Bourgeois D, Pradervand C, Schildkamp W, Wulff M, Moffat K (2001) Biochemistry 40:13802–13815

    Article  CAS  PubMed  Google Scholar 

  25. Anselmi M, Di Nola A, Amadei A (2011) Proteins 79:867–879

    Article  CAS  PubMed  Google Scholar 

  26. Sparacino-Watkins C, Ragireddy V, Gladwin M, Tejero J (2014) Nitric Oxide 42:141

    Article  Google Scholar 

  27. Bondarenko V, Dewilde S, Moens L, La Mar GN (2006) J Am Chem Soc 128:12988–12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halder P, Trent JT, Hargrove MS (2007) Proteins 66:172–182

    Article  CAS  PubMed  Google Scholar 

  29. Moschetti T, Mueller U, Schulze J, Brunori M, Vallone B (2009) Biophys J 97:1700–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weiland TR, Kundu S, Trent JT, Hoy JA, Hargrove MS (2004) J Am Chem Soc 126:11930–11935

    Article  CAS  PubMed  Google Scholar 

  31. Anselmi M, Brunori M, Vallone B, Di Nola A (2008) Biophys J 95:4157–4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anselmi M, Di Nola A, Amadei A (2008) Biophys J 94:4277–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Olson JS, Mathews AJ, Rohlfs RJ, Springer BA, Egeberg KD, Sligar SG, Tame J, Renaud JP, Nagai K (1988) Nature 336:265–266

    Article  CAS  PubMed  Google Scholar 

  34. Olson JS, Phillips GN Jr (1996) J Biol Chem 271:17593–17596

    Article  CAS  PubMed  Google Scholar 

  35. Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Proc Natl Acad Sci USA 95:10378–10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) J Biol Chem 277:871–874

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura R, Matsumoto D, Shibata T, Yanagisawa S, Ogura T, Tai H, Matsuo T, Hirota S, Neya S, Suzuki A, Yamamoto Y (2014) Inorg Chem 53:9156–9165

    Article  CAS  PubMed  Google Scholar 

  38. Grunwald EW, Richards MP (2006) J Agric Food Chem 54:4452–4460

    Article  CAS  PubMed  Google Scholar 

  39. Lin Y, Shu X, Du K, Nie C, Wen G (2014) Comput Biol Chem 52:60–65

    Article  PubMed  Google Scholar 

  40. Bossa C, Anselmi M, Roccatano D, Amadei A, Vallone B, Brunori M, Di Nola A (2004) Biophys J 86:3855–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bret C, Roth M, Norager S, Hatchikian EC, Field MJ (2002) Biophys J 83:3049–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceccarelli M, Ruggerone P, Anedda R, Fais A, Era B, Sollaino MC, Corda M, Casu M (2006) Biophys J 91:3529–3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elber R, Karplus M (1987) Science 235:318–321

    Article  CAS  PubMed  Google Scholar 

  44. Hummer G, Schotte F, Anfinrud PA (2004) Proc Natl Acad Sci USA 101:15330–15334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park H, Lee S, Suh J (2005) J Am Chem Soc 127:13634–13642

    Article  CAS  PubMed  Google Scholar 

  46. Scorciapino MA, Robertazzi A, Casu M, Ruggerone P, Ceccarelli M (2009) J Am Chem Soc 131:11825–11832

    Article  CAS  PubMed  Google Scholar 

  47. Furlan S, Penna GL, Banci L, Mealli C (2007) J Phys Chem B 111:1157–1164

    Article  CAS  PubMed  Google Scholar 

  48. La Penna G, Furlan S, Banci L (2007) J Biol Inorg Chem 12:180–193

    Article  PubMed  Google Scholar 

  49. Giachetti A, La Penna GL, Perico A, Banci L (2004) Biophys J 87:498–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banci L, Gori-Savellini G, Turano P (1997) Eur J Biochem 249:716–723

    Article  CAS  PubMed  Google Scholar 

  51. Anselmi M, Brunori M, Vallone B, Di Nola A (2007) Biophys J 93:434–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Danielsson J, Meuwly M (2008) J Chem Theory Comput 4:1083–1093

    Article  CAS  PubMed  Google Scholar 

  53. Mouawad L, Marechal JD, Perahia D (2005) Biochim Biophys Acta 1724:385–393

    Article  CAS  PubMed  Google Scholar 

  54. Nadra AD, Marti MA, Pesce A, Bolognesi M, Estrin DA (2008) Proteins 71:695–705

    Article  CAS  PubMed  Google Scholar 

  55. Orlowski S, Nowak W (2007) J Mol Model 13:715–723

    Article  CAS  PubMed  Google Scholar 

  56. Xu J, Yin G, Du W (2011) Proteins 79:191–202

    Article  CAS  PubMed  Google Scholar 

  57. Xu J, Yin G, Huang F, Wang B, Du W (2010) J Mol Model 16:759–770

    Article  CAS  PubMed  Google Scholar 

  58. Zhao C, Zhang B, Du W (2013) J Biol Inorg Chem 18:947–955

    Article  CAS  PubMed  Google Scholar 

  59. SYBYL 7.3, Tripos Software Inc, El Cerrito, CA, USA

  60. Case DA, Dardern TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  61. Giammona DA (1984) An examination of conformational flexibility in porphyrins and bulky-ligand binding in myoglobin. Ph. D. Thesis. University of California: Davis, CA

  62. Adcock SA, McCammon JA (2006) Chem Rev 106:1589–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  64. Laskowski RA (1995) J Mol Graph 13:323–330

    Article  CAS  PubMed  Google Scholar 

  65. Zhang B, Xu J, Li Y, Du W, Fang W (2011) J Inorg Biochem 105:949–956

    Article  CAS  PubMed  Google Scholar 

  66. Oobatake M, Ooi T (1993) Prog Biophys Mol Biol 59:237–284

    Article  CAS  PubMed  Google Scholar 

  67. Singh H, Ahmad S (2009) BMC Struct Biol 9 doi:10.1186/1472-6807-9-25

  68. Tsodikov OV, Record MT, Sergeev YV (2002) J Comput Chem 23:600–609

    Article  CAS  PubMed  Google Scholar 

  69. Lechauve C, Chauvierre C, Dewilde S, Moens L, Green BN, Marden MC, Celier C, Kiger L (2010) FEBS J 277:2696–2704

    Article  CAS  PubMed  Google Scholar 

  70. Mompean M, Gonzalez C, Lomba E, Laurents DV (2014) J Phys Chem B 118:7312–7316

    Article  CAS  PubMed  Google Scholar 

  71. de Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Biochem Biophys Res Commun 316:1217–1221

    Article  PubMed  Google Scholar 

  72. Kim H, Park H (2004) Proteins 54:557–562

    Article  CAS  PubMed  Google Scholar 

  73. Ioanitescu AI, Van Doorslaer S, Dewilde S, Endeward B, Moens L (2007) Mol Phys 105:2073–2086

  74. Du J, Li W, Li L, Wen G, Lin Y, Tan X (2015) Chemistryopen 4:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) J Mol Biol 339:873–885

    Article  CAS  PubMed  Google Scholar 

  76. Pietra F (2013) Chem Biodiversity 10:86–95

    Article  CAS  Google Scholar 

  77. Zhao X, Vyas K, Nguyen BD, Rajarathnam K, La Mar GN, Li T, Phillips GN Jr, Eich RF, Olson JS, Ling J, Bocian DF (1995) J Biol Chem 270:20763–20774

    Article  CAS  PubMed  Google Scholar 

  78. Arcon JP, Rosi P, Petruk AA, Marti MA, Estrin DA (2015) J Phys Chem B 119:1802–1813

    Article  CAS  PubMed  Google Scholar 

  79. Tetreau C, Blouquit Y, Novikov E, Quiniou E, Lavalette D (2004) Biophys J 86:435–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nishihara Y, Sakakura M, Kimura Y, Terazima M (2004) J Am Chem Soc 128:11877–11888

    Article  Google Scholar 

  81. Maragliano L, Cottone G, Ciccotti G, Vanden-Eijnden E (2009) J Am Chem Soc 132:1010–1017

    Article  Google Scholar 

  82. Laberge M, Yonetani T (2007) IUBMB Life 59:528–534

    Article  CAS  PubMed  Google Scholar 

  83. Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J (2013) J Inorg Biochem 129:23–29

    Article  CAS  PubMed  Google Scholar 

  84. Vallone B, Nienhaus K, Matthes A, Brunori M, Nienhaus GU (2004) Proc Natl Acad Sci USA 101:17351–17356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alayash AI, Ryan BAB, Eich RF, Olson JS, Cashon RE (1999) J Biol Chem 274:2029–2037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (No. 10XNJ011) and the National Basic Research Program (No. 2011CB808503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Du, W. Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations. J Biol Inorg Chem 21, 251–261 (2016). https://doi.org/10.1007/s00775-016-1334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1334-2

Keywords

Navigation