Skip to main content
Log in

ESEEM Measurements of Local Water Concentration in D2O-Containing Spin-Labeled Systems

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract.

To calibrate electron spin echo envelope modulation (ESEEM) amplitudes with respect to the deuterium water content in spin-labeled biological systems, ESEEM of nitroxide TEMPO has been studied in frozen glassy D2O-dimethylsulfoxide mixtures of different composition. The interaction between the unpaired electron of nitroxide and the deuterium nuclei manifests itself in a cosine Fourier transform spectrum as the sum of a narrow line with the doublet quadrupole splitting and of a broad one. The narrow line arises from interaction with distant deuterium nuclei, the broad one arises from interaction with nearby nuclei belonging to nitroxide-water molecule complexes. The dependence on water concentration was found to be nonlinear for the intensity of the narrow line and close to linear for the intensity of the quadrupole doublet. Therefore, the intensity of the quadrupole doublet is suggested as a measure of concentration of free water around a spin label in biological objects. Fourier transform line shape was theoretically simulated for different model distributions of water molecules around the spin label. Simulations confirm the linear dependence of the quadrupole doublet intensity on water concentration seen in the experiment. The suggested approach was applied to analyze data for spin-labeled dipalmitoylphosphatidylcholine (DPPC) and DPPC-cholesterol D2O-hydrated model membranes. The concentration of free water near the spin-labeled fourth carbon atom along the lipid chain was estimated as 5.2 and 7.2 M for DPPC and DPPC-cholesterol membranes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aman, K., Lindahl, E., Edholm, O., Hakansson, P., Westlund, P.-O.: Biophys. J. 84, 102–115 (2003)

    ADS  Google Scholar 

  • Fitter, J., Lechner, R.E., Dencher, N.A.: J. Phys. Chem. B 103, 8036–8050 (1999)

    Article  Google Scholar 

  • Bhide, S.Y, Berkowitz, M.L.: J. Chem. Phys. 123, 224702 (2005)

    Article  ADS  Google Scholar 

  • Noethig-Laslo, V., Cevc, P., Arcon, D., Sentjurc, M.: Appl. Magn. Reson. 27, 303–309 (2004)

    Article  Google Scholar 

  • Bartucci, R., Guzzi, R., Marsh, D., Sportelli, L.: Biophys. J. 84, 1025–1030 (2003)

    Article  ADS  Google Scholar 

  • Erilov, D.A., Bartucci, R., Guzzi, R., Shubin, A.A., Maryasov, A.G., Marsh, D., Dzuba, S.A., Sportelli, L.: J. Phys. Chem. B 109, 12003–12013 (2005)

    Article  Google Scholar 

  • Bartucci, R., Erilov, D.A., Guzzi, R., Sportelli, L., Dzuba, S.A., Marsh, D.: Chem. Phys. Lipids 141, 142–157 (2006)

    Article  Google Scholar 

  • Dikanov, S.A., Tsvetkov, Yu.D.: Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. CRC Press, Boca Raton, Fla. (1992)

    Google Scholar 

  • Schweiger, A., Jeschke, G.: Principles of Pulse Electron Paramagnetic Resonance. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Salnikov, E.S., Erilov, D.A., Milov, A.D., Tsvetkov, Yu.D., Peggion, C., Formaggio, F., Toniolo, C., Raap, J., Dzuba, S.A.: Biophys. J. 91, 1532–1540 (2006)

    Article  ADS  Google Scholar 

  • Dikanov, S.A., Tsvetkov, Yu.D.: J. Struct. Chem. 20, 699–708 (1979)

    Article  Google Scholar 

  • Dikanov, S.A., Tsvetkov, Yu.D.: J. Struct. Chem. 20, 800–802 (1979)

    Article  Google Scholar 

  • Dikanov, S.A., Astashkin, V.A., Tsvetkov, Yu.D.: J. Struct. Chem. 23, 333–345 (1982)

    Article  Google Scholar 

  • Symons, M.C.R., Pena-Nucez, A.: J. Chem. Soc. Faraday Trans. 1 1985, 2421–2435 (1985)

    Article  Google Scholar 

  • Improta, R., Scalmani, G., Barone, V.: Chem. Phys. Lett. 336, 349–356 (2001)

    Article  ADS  Google Scholar 

  • Engstrom, M., Owenius, R., Vahtras, O.: Chem. Phys. Lett. 338, 407–413 (2001)

    Article  ADS  Google Scholar 

  • Fauth, J.-M., Schweiger, A., Braunschweiler, L., Forrer, J., Ernst, R.R.: J. Magn. Reson. 66, 74–85 (1986)

    Google Scholar 

  • Nagle, J.F., Tristram-Nagle, S.: Biochim. Biophys. Acta 1469, 159–195 (2000)

    Google Scholar 

  • Mims, W.B.: Phys. Rev. B 5, 2409–2419 (1972)

    Article  ADS  Google Scholar 

  • Dikanov, S.A., Shubin, A.A., Parmon, V.N.: J. Magn. Reson. 42, 474–487 (1981)

    Google Scholar 

  • Shubin, A.A., Dikanov, S.A.: J. Magn. Reson. 52, 1–12 (1983)

    Google Scholar 

  • Madi, Z.L., Van Doorslaer, S., Schweiger, A.: J. Magn. Reson. 154, 181–191 (2002)

    Article  ADS  Google Scholar 

  • Rose, M.E.: Elementary Theory of Angular Momentum. Dover, New York (1995)

    Google Scholar 

  • Linear Algebra PACKage: http://netlib.org/lapack/index.html

  • Ponti, A.: J. Magn. Reson. 138, 288–297 (1999)

    Article  ADS  Google Scholar 

  • Edén, M.: Concepts Magn. Reson. 18A, 24–55 (2003)

    Article  Google Scholar 

  • Stevensson, B., Eden, M.: J. Magn. Reson. 181, 162–176 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authors’ address: Sergei Dzuba, Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Institutskaya 3, 630090 Novosibirsk, Russian Federation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milov, A., Samoilova, R., Shubin, A. et al. ESEEM Measurements of Local Water Concentration in D2O-Containing Spin-Labeled Systems. Appl Magn Reson 35, 73–94 (2008). https://doi.org/10.1007/s00723-008-0144-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-008-0144-2

Keywords

Navigation