Skip to main content

Advertisement

Log in

Mineralogy and petrology of lamprophyre and dolerite dykes from the end-Cretaceous (~ 66 Ma) Phenaimata alkaline igneous complex, north-western India: evidence for open magma chamber fractionation, mafic recharge, and disaggregation of crystal mush zone in a large igneous province

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The end-Cretaceous (ca. 66 Ma) Phenaimata alkaline igneous complex, associated in space and time with the Deccan large igneous province (LIP) in Western India, consists of bimodal (tholeiitic to alkaline) differentiated plutonic to volcanic igneous rocks. Mineralogy and petrology of variably fractionated alkaline lamprophyre and dolerite dykes of the complex are the focus of this study. The two lamprophyre dykes (termed as camptonite-I and camptonite-II) which intrude the host basalt/olivine dolerites and gabbro, differ in their liquidus minerals and crystal size distribution. Their respective rare earth element (REE) and trace element patterns suggest the lamprophyres to be genetically related, with the camptonite-II being relatively more evolved than that of the camptonite-I. Binary mixing model involving trace elements as well as the Sr˗Nd isotopic data in case of the camptonite-I, brings out involvement of crustal contamination in the generation of the lamprophyres. The two dolerites mostly consist of the liquidus phases, with the exception of olivine antecrysts created during early stages of the host gabbro formation but subsequently inherited into their magma. In terms of their trace element composition, the dolerites of this study show a strong similarity with that of the alkali basalts of the complex. The normal compositional zoning of pyroxene and amphibole from the lamprophyres shows that their parental magma initially experienced a closed system fractionation to form a large crystal mush zone and subsequently developed a smaller magmatic chamber where biotites of the camptonite-II first crystallised. Reverse zoning, resorption of crystals, disparity in crystal size distribution and their composition also reveals that a newer batch of magma was introduced from the feeding zone into the initially developed crystal laden magmatic chamber. This replenishment led to the disaggregation of crystals from the mush zone and the resulting magma subsequently evolved to form camptonite-I. Later on, the successive lateral spreading of the newly generated magma increased its buoyancy to rise through the smaller crustal chamber (with biotites) to generate camptonite-II. Our study demonstrates not only the operation of diverse open and closed system processes such as fractionation, replenishment and mush capturing that have occurred within inter-connected plumbing magmatic chambers beneath the alkaline complexes associated with the flood basalt volcanism in large igneous provinces but also their significant role in influencing the ultimate composition of the associated diverse rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152(1):117.https://doi.org/10.1007/s00410-006-0085-4

  • Adam J, Green TH (1994) The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem Geol 117(1–4):219–233. https://doi.org/10.1016/0009-2541(94)90129-5

    Article  Google Scholar 

  • Akinin VV, Sobolev AV, Ntaflos T, Richter W (2005) Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): application to composition and evolution of mantle melts. Contrib Mineral Petrol 150(1):85–101. https://doi.org/10.1007/s00410-005-0007-x

    Article  Google Scholar 

  • Ashwal LD, Ziegler A, Glynn S, Truebody T, Bolhar R (2021) Sr‐enriched glassy picrites from the Karoo Large Igneous Province are evolved, not primitive magmatic rocks. Geochem Geophysi Geosyst 22(4), p.e2020GC009561. https://doi.org/10.1029/2020GC009561

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Petrol 49(12):2277–2285

    Article  Google Scholar 

  • Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101(11):2377–2404. https://doi.org/10.1093/petrology/egn068

    Article  Google Scholar 

  • Banerjee A, Chakrabarti R (2019) A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the~ 65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy. Lithos 326:572–585. https://doi.org/10.1016/j.lithos.2019.01.007

    Article  Google Scholar 

  • Basu AR, Chakrabarty P, Szymanowski D, Ibañez-Mejia M, Schoene B, Ghosh N, Georg RB (2020) Wide spread silicic and alkaline magmatism synchronous with the Deccan Traps flood basalts. India Earth Planet Sci Lett 552:116616. https://doi.org/10.1016/j.epsl.2020.116616

    Article  Google Scholar 

  • Basu AR, Renne PR, Das Gupta D, Teichmann F, Poreda RJ (1993) Early and late alkali igneous pulses and a high-3He origin for the Deccan flood basalts. Science 261(902):906. https://doi.org/10.1126/science.261.5123.902

    Article  Google Scholar 

  • Batki A, Pál-Molnár E, Jankovics MÉ, Kerr AC, Kiss B, Markl G, Heincz A, Harangi S (2018) Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania. Lithos 300:51–71

    Article  Google Scholar 

  • Bergantz GW, Schleicher JM, Burgisser A (2015) Open-system dynamics and mixing in magma mushes. Nat Geosci 8(10):793–796.https://doi.org/10.1038/ngeo2534

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355(6331). https://doi.org/10.1126/science.aag3055

  • Chalapathi Rao NV, Lehmann B (2011) Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province. Earth-Sci Rev 107(3–4):315–324

    Google Scholar 

  • Chen L, Zheng YF, Zhao ZF (2018) Geochemical insights from clinopyroxene phenocrysts into the effect of magmatic processes on petrogenesis of intermediate volcanics. Lithos 316:137–153. https://doi.org/10.1016/j.lithos.2018.07.014

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38(11):1011–1014.https://doi.org/10.1130/G31285.1

  • Cooper KM, Kent AJ (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506(7489):480–483. https://doi.org/10.1038/nature12991

    Article  Google Scholar 

  • Cooper KM (2017) What does a magma reservoir look like? The “Crystal’s-Eye” view. Elements 13(1):23–28. https://doi.org/10.2113/gselements.13.1.23

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411(6841):1037–1039. https://doi.org/10.1038/35082540

    Article  Google Scholar 

  • Cox KG, Hawkesworth CJ (1984) Relative contribution of crust and mantle to flood basalt magmatism, Mahabaleshwar area, Deccan Traps. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences 310:627–641. https://doi.org/10.1098/rsta.1984.0011

    Article  Google Scholar 

  • Dal Negro A, Carbonin S, Molin GM, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. Advances in physical geochemistry. Springer, New York, pp 117–150

    Chapter  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Annu Rev Earth Planet Sci 35:273–311. https://doi.org/10.1146/annurev.earth.35.031306.140211

    Article  Google Scholar 

  • De Angelis SH, Larsen J, Coombs M (2013) Pre-eruptive magmatic conditions at Augustine Volcano, Alaska, 2006: evidence from amphibole geochemistry and textures. J Petrol 54(9):1939–1961

    Article  Google Scholar 

  • Dessai AG, Viegas A (2010) Petrogenesis of alkaline rocks from Murud-Janjira, in the Deccan Traps, Western India. Mineral Petrol 98:297–311. https://doi.org/10.1007/s00710-009-0105-y

    Article  Google Scholar 

  • Di Stefano F, Mollo S, Ubide T, Petrone CM, Caulfield J, Scarlato P, Nazzari M, Andronico D, Del Bello E (2020) Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos 360:105440

  • Doroshkevich AG, Chebotarev DA, Sharygin VV, Prokopyev IR, Nikolenko AM (2019) Petrology of alkaline silicate rocks and carbonatites of the Chuktukon massif, Chadobets uplift, Russia: sources, evolution and relation to the Triassic Siberian LIP. Lithos 332–333:245–260

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482(7383):77–80. https://doi.org/10.1038/nature10706

    Article  Google Scholar 

  • Durgadamath MB (1984) Lamprophyre dykes from Phenai Mata area, Baroda district. J Geol Soc India Spec Publ 12:3–7

    Google Scholar 

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76. https://doi.org/10.1007/s00710-009-0074-1

    Article  Google Scholar 

  • Ernst RE, Liikane DA, Jowitt SM, Buchan KL, Blanchard JA (2019) A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusion. J Volcanol Geotherm Res 384:75–84. https://doi.org/10.1016/j.jvolgeores.2019.07.007

    Article  Google Scholar 

  • Farnetani CG, Richards MA, Ghiorso MS (1996) Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth Planet Sci Lett 143(1–4):81–94. https://doi.org/10.1016/0012-821X(96)00138-0

    Article  Google Scholar 

  • Fisk MR, Duncan RA, Baxter AN, Greenough JD, Hargraves RB, Tatsumi Y (1989) Reunion hotspot magma chemistry over the past 65 my: Results from Leg 115 of the Ocean Drilling Program. Geology 17(10):934–937

    Article  Google Scholar 

  • Gibb FG (1973) The zoned clinopyroxenes of the Shiant Isles sill. Scotland J Petrol 14(2):203–230. https://doi.org/10.1130/0091-7613(1989)017%3c0934:RHMCOT%3e2.3.CO;2

    Article  Google Scholar 

  • Ginibre C, Kronz A, WoÈrner G (2002) High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on Oscillatory zoning. Contrib Mineral Petrol 142(4):436–448. https://doi.org/10.1007/s004100100298

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2004) Structure and dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. J Petrol 45(11):2197–2223. https://doi.org/10.1093/petrology/egh053

    Article  Google Scholar 

  • Ginibre C, Wörner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3(4):261–266. https://doi.org/10.2113/gselements.3.4.261

    Article  Google Scholar 

  • Gleeson ML, Gibson SA, Stock MJ (2021) Upper mantle mush zones beneath low melt flux ocean island volcanoes: insights from Isla Floreana, Galápagos. J Petrol 61(11- 12):egaa094

  • Gwalani LG, Rock NMS, Chang WJ, Fernandez S, Allegre CJ, Prinzhofer A (1993) Alkaline rocks and carbonatites of ambadongar and adjacent areas, Deccan Igneous Province, Gujarat, India: Geology, Petrography and Petrochemistry. Mineral Petrol 47:219–253

    Article  Google Scholar 

  • Hari KR, Rao NC, Swarnkar V (2011) Petrogenesis of gabbro and orthopyroxene gabbro from the Phenai Mata Igneous Complex, Deccan volcanic province: Products of concurrent assimilation and fractional crystallization. J Geol Soc India 78(6):501–509. https://doi.org/10.1007/s12594-011-0126-0

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97(11 12):2031–2048. https://doi.org/10.2138/am.2012.4276

  • Higgins MD, Chandrasekharam D (2007) Nature of sub-volcanic magma chambers, Deccan Province, India: evidence from quantitative textural analysis of plagioclase megacrysts in the giant plagioclase basalt. J Petrol 48(5):885–900. https://doi.org/10.1093/petrology/egm005

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116(4):433–447

    Article  Google Scholar 

  • Humphreys MC, Blundy JD, Sparks RSJ (2006) Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning. J Petrol 47(12):2303–2334. https://doi.org/10.1093/petrology/egl045

    Article  Google Scholar 

  • Ishibashi H, Suwa Y, Miyoshi M, Yasuda A, Hokanishi N (2018) Amphibole–melt disequilibrium in silicic melt of the Aso-4 caldera-forming eruption at Aso Volcano. SW Japan Earth Planets and Space 70(1):1–2

    Google Scholar 

  • Kerr AC, Khan M, Mahoney JJ, Nicholson KN, Hall CM (2010) Late Cretaceous alkaline sills of the south Tethyan suture zone, Pakistan: initial melts of the Réunion hotspot? Lithos 117(1–4):161–171. https://doi.org/10.1016/j.lithos.2010.02.010

    Article  Google Scholar 

  • Kiss B, Harangi S, Ntaflos T, Mason PR, Pál-Molnár E (2014) Amphibole perspective to unravel pre-eruptive processes and conditions in volcanic plumbing systems beneath intermediate arc volcanoes: a case study from Ciomadul volcano (SE Carpathians). Contrib Mineral Petrol 167(3):986. https://doi.org/10.1007/s00410-014-0986-6

    Article  Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339. https://doi.org/10.1007/s00410-012-0740-x

    Article  Google Scholar 

  • Kumar S (1996) Geochemical specialization of Phenai Mata Igneous Complex, Baroda district, Gujarat. J Scientific Res 46:207–218

    Google Scholar 

  • Kumar S (2003) Variation in the thickness of the lithosphere underneath the Deccan volcanic province, evidence from rare earth elements. Memo Geol Soc India 52:179–194

    Google Scholar 

  • LaTourette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30. https://doi.org/10.1016/0012-821X(95)00146-4

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas M J, Bonin B, Bateman P, Woolley AR (2002) Igneous rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press. ISBN: 0521619483, 978–0521619486

  • Marzoli A, Aka FT, Merle R, Callegaro S, N’ni J (2015) Deep to shallow crustal differentiation of within-plate alkaline magmatism at Mt. Bambouto volcano. Cameroon Line Lithos 220:272–288

    Google Scholar 

  • Mitchell RH (1995) Kimberlites and orangeites. In Kimberlites, Orangeites, and Related Rocks. Springer, Boston, MA pp. 1–90

  • Mollo S, Blundy JD, Iezzi G, Scarlato P, Langone A (2013) The partitioning of trace elements between clinopyroxene and trachy basaltic melt during rapid cooling and crystal growth. Contrib Mineral Petrol 166(6):1633–1654. https://doi.org/10.1007/s00410-013-0946-6

    Article  Google Scholar 

  • Mollo S, Del Gaudio P, Ventura G, Iezzi G, Scarlato P (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos 118(3–4):302–312. https://doi.org/10.1016/j.lithos.2010.05.006

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535˗550. https://doi.org/10.1007/BF01226262

  • O’Hara MJ, Mathews RE (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc Lond 138:237–277. https://doi.org/10.1144/gsjgs.138.3.0237

    Article  Google Scholar 

  • Pandey R, Chalapathi Rao NV, Pandit D, Sahoo S, Dhote P (2018a) Imprints of modal metasomatism in the post-Deccan subcontinental lithospheric mantle: petrological evidence from an ultramafic xenolith in an Eocene lamprophyre, NW India. J Geol Soc London Spec Publ 463:117–136

    Article  Google Scholar 

  • Pandey R, Chalapathi Rao NV, Dhote P, Pandit D, Choudhary AK, Sahoo S, Lehmann B (2018b) Rift-associated ultramafic lamprophyre (damtjernite) from the middle part of the lower cretaceous (125 Ma) succession of Kutch, north western India: tectonomagmatic implications. Geosci Front 9:1883–1902. https://doi.org/10.1016/j.gsf.2017.10.013

    Article  Google Scholar 

  • Pandey R, Sahoo S, Pandit D, Pandey M, Chalapathi Rao NV (2018c) Recurrent lamprophyre magmatism in the Narmada rift zone: petrographic and mineral chemistry evidence from xenoliths in the Eocene Dongargaon lamprophyre, NW Deccan Large Igneous Province. India J Indian Inst Sci 98(4):401–415. https://doi.org/10.1007/s41745-018-0074-4

    Article  Google Scholar 

  • Pandey R, Pandey A, Chalapathi Rao NV, Belyatsky B, Choudhary AK, Lehmann B, Pandit D, Dhote P (2019) Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: constraints on plume lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India. Lithos 346–347:105139. https://doi.org/10.1016/j.lithos.2019.07.006

    Article  Google Scholar 

  • Pankov V, Oleinikov BV, Krishnamurthy P, Murari R, Gopalan K, Subbarao KV (1994) Mineral and melt inclusions in the giant plagioclase phenocrysts of Deccan basalts, Western Ghats, India: Some comparisons with plagioclases of intrusive Siberian Traps and implications on the physicochemical conditions during magmatic evolution. Volcanism: New Delhi, Wiley Eastern, 187–199

  • Parisio L, Jourdan F, Marzoli A, Melluso L, Sethna SF, Bellieni G (2016) 40Ar/39Ar ages of alkaline and tholeiitic rocks from the northern Deccan Traps: implications for magmatic processes and the K-Pg boundary. J Geol Soc London 173:679–688

    Article  Google Scholar 

  • Pearce TH (1994) Recent work on oscillatory zoning in plagioclase. Feldspars and their reactions. Springer, Dordrecht, pp 313–349

    Chapter  Google Scholar 

  • Perugini D, Poli G, Valentini L (2005) Strange attractors in plagioclase oscillatory zoning: petrological implications. Contrib Mineral Petrol 149(4):482–497. https://doi.org/10.1007/s00410-005-0667-6

    Article  Google Scholar 

  • Pietranik A, Koepke J, Puziewicz J (2006) Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gęsiniec granodiorite, Strzelin Crystalline Massif, SW Poland). Lithos 86(3–4):260–280. https://doi.org/10.1016/j.lithos.2005.05.008

    Article  Google Scholar 

  • Putirka K (1999) Clinopyroxene C liquid equilibria to 100 kbar and 2450K. Contrib Mineral Petrol 135:151–163. https://doi.org/10.1007/s004100050503

    Article  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Mineral 101(4):841–858. https://doi.org/10.2138/am-2016-5506

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Putirka KD (2017) Down the crater: where magmas are stored and why they erupt. Elements 13(1):11–16. https://doi.org/10.2113/gselements.13.1.11

    Article  Google Scholar 

  • Ramos FC, Wolff JA, Tollstrup DL (2005) Sr isotope disequilibrium in Columbia River flood basalts: Evidence for rapid shallow-level open-system processes. Geology 33(6):457–460. https://doi.org/10.1130/G21512.1

    Article  Google Scholar 

  • Randive K, Kumar JV, Korakoppa MM (2015) Platinum-Group Elements Mineralization in the Cumulate Gabbro of Phenai Mata Complex, Deccan Large Igneous Province. India Current Science 108(10):1796–1798

    Google Scholar 

  • Randive KR, Kumar JV, Sahu MK, Korakoppa MM (2017) Occurrence of REE mineralization in the layered gabbros of Phenai Mata Igneous Complex, Gujarat. India Current Science 112(2):231–235

    Google Scholar 

  • Rhodes JM, Dungan MA, Blanchard DP, Long PE (1979) Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22 N on the Mid-Atlantic Ridge. Tectonophysics 55(1–2):35–61. https://doi.org/10.1016/0040-1951(79)90334-2

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 ºC and 2.2 GPa. Contrib Mineral Petrol 163(5):877–895. https://doi.org/10.1007/s00410-011-0704-6

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160(1):45–66. https://doi.org/10.1007/s00410-009-0465-7

    Article  Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie and Sons Ltd., Glasgow, 287

  • Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289. https://doi.org/10.1007/BF00371276

    Article  Google Scholar 

  • Sadashivaiah MS, Durgadmath MB (1976) Camptonite dykes from Phenai Mata area, Baroda district, Gujrat state, India. Karnatak Univ J Sci 21

  • Sahoo S, Chalapathi Rao NV, Monié P, Belyatsky B, Dhote P, Lehmann B (2020) Petro-geochemistry, Sr-Nd isotopes and 40Ar/39Ar ages of fractionated alkaline lamprophyres from the Mount Girnar igneous complex (NW India): Insights into the timing of magmatism and the lithospheric mantle beneath the Deccan Large Igneous Province. Lithos 374:105712. https://doi.org/10.1016/j.lithos.2020.105712

    Article  Google Scholar 

  • Sharma A, Sahoo S, Chalapathi Rao NV, Belyatsky B, Dhote P, Lehmann B (2021) Petrology and Nd-Sr isotopic composition of alkaline lamprophyres from the Early to Late Cretaceous Mundwara alkaline complex, NW India: evidence of crystal fractionation, accumulation and corrosion in a complex magma chamber plumbing system. In: Krmíček, L. and Chalapathi Rao, NV (eds) Lamprophyres, Lamproites and Related Rocks: Tracers to Supercontinent Cycles and Metallogenesis. J Geol Soc Lond Spec Pub 513. https://doi.org/10.1144/SP513-2020-175

  • Simonetti A, Goldstein SL, Schmidberger SS, Viladkar SG (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes- Inferences for mantle sources and plume-lithosphere interaction. J Petrol 39:1847–1864. https://doi.org/10.1093/petroj/39.11-12.1847

    Article  Google Scholar 

  • Singh B, Rao MP, Prajapati SK, Swarnapriya C (2014) Combined gravity and magnetic modeling over Pavagadh and Phenaimata igneous complexes, Gujarat, India: Inference on emplacement history of Deccan volcanism. J Asian Earth Sci 80:119–133. https://doi.org/10.1016/j.jseaes.2013.11.005

    Article  Google Scholar 

  • Soltanmohammadi A, Grégoire M, Ceuleneer G, Benoit M, Bédard LP, Gouy S, Rabinowicz M (2021) Origin of antecrysts in igneous rocks from the Salavat Range (NW Iran): an explanation for the geochemical signature of potassic alkaline rocks. J Petrol. https://doi.org/10.1093/petrology/egab031

  • Sparks RSJ, Meyer P, Sigurdsson H (1980) Density variation amongst mid-ocean ridge basalts: implications for magma mixing and the scarcity of primitive lavas. Earth Planet Sci Lett 46(3):419–430. https://doi.org/10.1016/0012-821X(80)90055-2

    Article  Google Scholar 

  • Spear FS (1981) An experimental study of hornblende stability and compositional variability in amphibolite. Am J Sci 281(6):697–734. https://doi.org/10.2475/ajs.281.6.697

    Article  Google Scholar 

  • Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74(1):13–27

    Article  Google Scholar 

  • Streck MJ (2008) Mineral textures and zoning as evidence for open system processes. Rev in Mineral Geochem 69(1):595–622

    Article  Google Scholar 

  • Sukheswala RN, Sethna SF (1969) Layered gabbro of the igneous complex of Phenai Mata. Gujarat State J Geol Soc India 10(2):177–187

    Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47:1261–1315. https://doi.org/10.1093/petrology/egl008

    Article  Google Scholar 

  • Thomson A, Maclennan, (2013) The distribution of olivine compositions in Icelandic basalts and picrites. J Petrol 54(4):745–768. https://doi.org/10.1093/petrology/egs083

    Article  Google Scholar 

  • Ubide T, Arranz E, Lago M, Galé C, Larrea P (2012) The influence of crystal settling on the compositional zoning of a thin lamprophyre sill: a multi-method approach. Lithos 132–133:37–49. https://doi.org/10.1016/j.lithos.2011.11.012

    Article  Google Scholar 

  • Ubide T, Gale C, Arranz E, Lago M, Larrea P (2014) Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning. Lithos 184:225–242. https://doi.org/10.1016/j.lithos.2013.10.029

    Article  Google Scholar 

  • Ubide T, Kamber BS (2018) Volcanic crystals as time capsules of eruption history. Nat Commun 9(1):1–12

    Article  Google Scholar 

  • Ulrych J, Krmíček L, Teschner C, Skála R, Adamovič J, Ďurišová J, Křížová Š, Kuboušková S, Radoň M (2018) Chemistry and Sr-Nd isotope signature of amphiboles of the magnesio-hastingsite–pargasite–kaersutite series in Cenozoic volcanic rocks: Insight into lithospheric mantle beneath the Bohemian Massif. Lithos 312:308–321. https://doi.org/10.1016/j.lithos.2018.05.017

    Article  Google Scholar 

  • Verma SP, Torres-Alvarado IS, Sotelo-Rodrı́guez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Computers & Geosciences 28(5):711–5. https://doi.org/10.1016/S0098-3004(01)00087-5

  • Vijaya Kumar J, Randive K (2021) Platinum group elements in lamprophyre, picrobasalt, gabbro and basalts of the Phenaimata and nearby areas: implications for Fe–Ni–Cu–PGE mineralization in the Deccan Large Igneous Province. In: Krmíček, L. and Chalapathi Rao, NV (eds) Lamprophyres, Lamproites and Related Rocks: Tracers to Supercontinent Cycles and Metallogenesis. Geol Soc Lond Spec Pub 513. https://doi.org/10.1144/SP513-2020-265

  • Vijaya Kumar K, Chavan C, Sawant S, Raju KN, Kanakdande P, Patode S, Deshpande K, Krishnamacharyulu SKG, Vaideswaran T, Balaram V (2010) Geochemical investigation of a semi-continuous extrusive basaltic section from the Deccan Volcanic Province, India: implications for the mantle and magma chamber processes. Contrib Mineral Petrol 159(6):839–862. https://doi.org/10.1007/s00410-009-0458-6

    Article  Google Scholar 

  • Wang C, Zhang Z, Giuliani A, Cheng Z, Liu B, Kong W (2021) Geochemical and O-C–Sr–Nd Isotopic Constraints on the Petrogenetic Link between Aillikites and Carbonatites in the Tarim Large Igneous Province. J Petrol. https://doi.org/10.1093/petrology/egab017

    Article  Google Scholar 

  • Wieser PE, Edmonds M, Maclennan J, Jenner FE, Kunz BE (2019) Crystal scavenging from mush piles recorded by melt inclusions. Nat Commun 10(1):1–11. https://doi.org/10.1038/s41467-019-13518-2

    Article  Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annual Rev Earth Planet Sci 14(1):493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425

    Article  Google Scholar 

Download references

Acknowledgements

It is a great pleasure for us to contribute to this issue in the memory of Professor Lalchand Govindram (Lalou) Gwalani, with whom co-author N.V.C.R. was closely associated for several years. The authors thank Head, Department of Geology, Banaras Hindu University for providing the necessary facilities. Constructive reviews by Lukáš Krmíček and an anonymous expert as well as helpful comments by the handling editor Kirtikumar Randive and editorial suggestion by chief editor Lutz Nasdala are gratefully acknowledged. The work was supported by two major research projects granted to N.V.C.R. by the Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi (SR/S4/ES-599/2011 dated 27.5.2013 and IR/S4/ESF-18/2011 dated 12.11.2013). N.V.C.R. and R.P. also thank Banaras Hindu University for awarding them faculty incentive grant and seed grant respectively under the IOE (institute of eminence) project. A.S. is grateful to the Physical Research Laboratory, Navrangpura, Ahmedabad for granting a post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nittala V. Chalapathi Rao.

Additional information

Editorial handling: K. R. Randive

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Pandey, R., Rao, N.V.C. et al. Mineralogy and petrology of lamprophyre and dolerite dykes from the end-Cretaceous (~ 66 Ma) Phenaimata alkaline igneous complex, north-western India: evidence for open magma chamber fractionation, mafic recharge, and disaggregation of crystal mush zone in a large igneous province. Miner Petrol 117, 415–445 (2023). https://doi.org/10.1007/s00710-021-00770-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-021-00770-y

Keywords

Navigation