Skip to main content
Log in

Fluid evolution in H2O–CO2–NaCl system and metallogenic analysis of the Surian metamorphic complex, Bavanat Cu deposit, Southwest Iran

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Bavanat Cu deposit occurs as veins controlled by a NE–trending structure within the Permo–Triassic Surian metamorphic complex (SMC), southwest of Iran. The SMC rocks exposed in the area have undergone greenschist-facies metamorphism. The ore-forming process can be divided into early, middle, and late stages, represented by, respectively, pyrite–quartz, polymetallic sulfide–quartz, and late–stage barren quartz veins. Systematic studies of fluid inclusions (FIs) in the quartz veins found four types: aqueous, mixed aqueous–carbonic, carbonic, and multiphase–bearing inclusions. The FIs of early, middle and late–stages are mainly homogenized at temperatures of 335–417 °C, 230–380 °C, and 190–227 °C, with salinities of 1.1–6.7, 2.9–36.6, and 0.8–2.6 wt.% NaCl equivalent, respectively. The main stage of Cu mineralization is related to the middle–stage, where FIs show evidence of fluid immiscibility. The metal precipitation resulted from a decrease in copper solubility during the fluid immiscibility, cooling, crystallization of multiphase–bearing inclusions, and a small increase in pH. Laser Raman spectroscopy and FIs evidences indicate that the metallogenic system evolved from metamorphic CO2 (+CH4)–rich, relatively high fO2 (10−25 to 10−29 bars) to CO2–poor and relatively low fO2 (10−31 to 10−34 bars). Muscovite from the middle–stage veins yields 40Ar/39Ar plateau age of 195.2 ± 1.0 Ma, suggesting that the Cu mineralization at Bavanat formed in the Early Jurassic coeval with the retrograde metamorphic events during the post–early Cimmerian orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akyildiza M, Yildırım N, Goren B, Yildirım E, Iihan S (2015) The origin of vein–type copper–lead–zinc deposits host in Palaeozoic metamorphic rocks at the southeast Anatolian orogenic belt (Kupluce–Adiyaman, southeastern Turkey). J Afr Earth Sci 102:191–202

    Article  Google Scholar 

  • Alavi M (2004) Regional stratigraphy of the Zagros fold–Thrust Belt of Iran and its proforeland evolution. Am J Sci 304:1–20

    Article  Google Scholar 

  • Aliyari F, Rastad E, Mohajjel M (2012) Gold deposits in the Sanandaj–Sirjan zone: orogenic gold deposits or intrusion-related gold systems? Resour Geol 62:296–315

    Article  Google Scholar 

  • Anderson R, Graham CM, Boyce AJ, Fallick AE (2004) Metamorphic and basin fluids in quartz–carbonate–sulphide veins in the SW Scottish highlands: a stable isotope and fluid inclusion study. Geofluids 4:169–185

    Article  Google Scholar 

  • Asadi S, Moore F, Fattahi N (2013a) Fluid inclusion and stable isotope constraints on the genesis of the Jian copper deposit, Sanandaj–Sirjan metamorphic zone, Iran. Geofluids 13:66–81

    Article  Google Scholar 

  • Asadi S, Moore F, Zarasvandi A, Khosrojerdi M (2013b) First report on the occurrence of CO2-bearing fluid inclusions in the Meiduk porphyry copper deposit, Iran: implications for mineralisation processes in a continental collision setting. Geologos 4:301–320

    Google Scholar 

  • Asadi S, Moore F, Zarasvandi A (2014) Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano–plutonic belt, Kerman region, Iran: a review. Earth Sci Rev 138:25–46

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Banks DA, Guiliani G, Yardley BWD, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineral Deposita 35:699–713

    Article  Google Scholar 

  • Barker AJ, Bennett DG, Boyce AJ, Fallick AE (2000) Retrogression by deep infiltration of meteoric fluids into thrust zones during late–orogenic rapid unroofing. J Metamorph Geol 18:307–318

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Ac 57:683–684

    Article  Google Scholar 

  • Bodnar RJ, Lecumberri–Sanchez P, Moncada D, Steele–MacInnis M (2014) Fluid inclusions in hydrothermal ore deposits. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier Science and Technology, Oxford, pp. 119–142

    Chapter  Google Scholar 

  • Bowers TS, Helgeson HC (1983) Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geological systems: equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures. Geochim Cosmochim Ac 47:1247–1275

    Article  Google Scholar 

  • Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55:139–158

    Article  Google Scholar 

  • Burruss RC (1981) Analysis of phase equilibria in C–O–H–S fluid inclusions. Miner Ass Canada Short Course Handbook 6:39–74

    Google Scholar 

  • Chen YJ (2006) Orogenic type deposits and their metallogenic model and exploration potential. Geol China 33:1181–1196

    Google Scholar 

  • Chen YJ, Pirajno F, Sui YH (2004) Isotope geochemistry of the Tieluping silver deposit, Henan, China: a case study of orogenic silver deposits and related tectonic setting. Mineral Deposita 39:560–575

    Article  Google Scholar 

  • Chen YJ, Ni P, Fan HR, Lai Y, Su WC, Zhang H (2007) Diagnostic fluid inclusions of different types gold deposits. Acta Petrol Sin 23:2085–2108

    Google Scholar 

  • Chen YJ, Pirajno F, Qi JP (2008) The Shanggong gold deposit, eastern Qinling orogen, China: isotope geochemistry and implications for ore genesis. J Asian Earth Sci 33:252–266

    Article  Google Scholar 

  • Chester R, Jickells TD (2012) Marine geochemistry. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Cline JS, Bodnar RJ (1994) Direct evolution of a brine from crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    Article  Google Scholar 

  • Collins PLF (1979) Gas hydrates in CO2–bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ Geol 74:1435–1444

    Article  Google Scholar 

  • Cox SF (2005) Coupling between deformation fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust. Econ Geol 100:39–75

    Google Scholar 

  • Cox SF, Sun SS, Etheridge MA, Wall VJ, Potter TF (1995) Structural and geochemical controls on the development of turbidite–hosted gold quartz vein deposits, wattle gully mine, Central Victoria, Australia. Econ Geol 90:1722–1746

    Article  Google Scholar 

  • Cox SF, Knackstedt MA, Brown J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24

    Article  Google Scholar 

  • Craw D, Upton P, Yu BS, Horton T, Chen YG (2010) Young orogenic gold mineralisation in active collisional mountains, Taiwan. Mineral Deposita 45:631–646

    Article  Google Scholar 

  • Diamond LW (1990) Fluid inclusion evidence for P–V–T–X evolution of hydrothermal solutions in late-alpine gold–quartz veins at Brusson, Val D'ayas, northwest Italian alps. Am J Sci 290:912–958

    Article  Google Scholar 

  • Diamond LW (2001) Review of the systematics of CO2 –H2O fluid inclusions. Lithos 55:69–99

    Article  Google Scholar 

  • Diamond LW (2003a) Glossary: terms and symbols used in fluid inclusion studies. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation, short course volume 32. Mineral Assoc Can, Quebec, pp. 363–372

    Google Scholar 

  • Diamond LW (2003b) Systematics of H2O inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation, short course series volume 32. Mineral Assoc Can, Quebec, pp. 55–79

    Google Scholar 

  • Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dreher AM, Xavier RP, Taylor BE, Martini S (2007) New geologic, fluid inclusion and stable isotope studies on the controversial Igarape Bahia Cu–Au deposit, Carajas Province, Brazil. Mineral Deposita 43:161–184

    Article  Google Scholar 

  • Dube B, Gosselin P (2007) Greenstone-hosted quartz-carbonate vein deposits. Geol Assoc Can 5:49–73

    Google Scholar 

  • Dugdale AL, Hagemann SG (2001) The Bronzewing lode–gold deposit, Western Australia: P–T–X evidence for fluid immiscibility caused by cyclic decompression in gold–bearing quartz veins. Chem Geol 173:59–90

    Article  Google Scholar 

  • Evans AM, Battles DA (2011) Fluid inclusion and stable isotope analyses of veins from the central Appalachian Valley and ridge province: implications for regional synorogenic hydrologic structure and fluid migration. Geol Soc Am Bull 12:1841–1860

    Google Scholar 

  • Evans MJ, Derry LA, France–Lanord C (2008) Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst 9:1–18

    Google Scholar 

  • Fattahi N (2012) Geochemistry and genesis of copper mineralization in the Surian complex, Jian area (Bavanat, Fars Province). Shiraz University, Dissertation

    Google Scholar 

  • Fazlnia A, Moradian A, Rezaei K, Moazzen M, Alipour S (2007) Synchronous activity of anorthositic and S–type granitic magmas in Chah–Dozdan batholith, Neyriz, Iran: evidence of zircon SHRIMP and monazite CHIME dating. J Sci 18:221–237

    Google Scholar 

  • Ford RC, Snee LW (1996) 40Ar/39Ar thermochronology of white mica from the Nome District, Alaska: the first ages of lode sources to placer gold deposits in the Seward peninsula. Econ Geol 91:213–220

    Article  Google Scholar 

  • Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20

    Article  Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources. Springer, Dordrecht

    Book  Google Scholar 

  • Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol 100:407–450

    Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre–Mariam M, Hagemann SG, Robert F, Arne DC (1998) Orogenic gold deposits; a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol 98:1–29

    Google Scholar 

  • Hagemann SG, Brown PE (1996) Geobarometry in Archean lode–gold deposits. Eur J Mineral 8:937–960

    Article  Google Scholar 

  • Hagemann SG, Lüders V (2003) P–T–X conditions of hydrothermal fluid and precipitation mechanism of stibnite–gold mineralization at the Wiluna lode–gold deposits, Western Australia: conventional and infrared microthermometric constraints. Mineral Deposita 38:936–952

    Article  Google Scholar 

  • Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl–KCl–H2O solutions. Econ Geol 83:197–202

    Article  Google Scholar 

  • Hames WE, Cheney JT (1997) On the loss of 40Ar from muscovite during polymetamorphism. Geochim Cosmochim Ac 61:3863–3872

    Article  Google Scholar 

  • Hao YJ, Ren YS, Yang Q, Duan MX, Sun Q, Fu LC, Li C (2015) Ore genesis and formation age of the Gaogangshan Mo deposit, Heilongjiang province, NE China. Resour Geol 65:177–192

    Article  Google Scholar 

  • Hayashi K, Ohmoto H (1991) Solubility of gold in NaCl and H2S–bearing aqueous solutions at 250–350 °C. Geochim Cosmochim Ac 55:2111–2126

    Article  Google Scholar 

  • Heinrich CA, Andrew AS, Wilkins RWT, Patterson DJ (1989) A fluid inclusion and stable isotope study of synmetamorphic copper ore formation at Mount Isa, Australia. Econ Geol 84:529–550

    Article  Google Scholar 

  • Helmy HM, Kaindl R (1999) Mineralogy and fluid inclusion studies of the Au-Cu quartz veins in the Hamash area, south-Eastern Desert, Egypt. Mineral Petrol 65:69–86

    Article  Google Scholar 

  • Henley RW (1983) pH and silica scale control in geothermal field development. Geothermics 12:307–321

    Article  Google Scholar 

  • Hezarkhani A (2006) Mineralogy and fluid inclusion investigations in the Reagan porphyry system, Iran, the path to an uneconomic porphyry copper deposit. J Asian Earth Sci 27:598–612

    Article  Google Scholar 

  • Hezarkhani A, Williams–Jones AE, Gammons CH (1999) Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineral Deposita 34:770–783

    Article  Google Scholar 

  • Holloway JR (1981) Compositions and volumes of supercritical fluids in the earth's crust. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusions: applications to petrology, 6th edn. Mineralogical Association of Canada, Calgary, p. 304

    Google Scholar 

  • Hoseini A (2004) Petrological and deformational studies on regional metamorphic rocks of the Koresefid area, north east of Neyriz. Tabriz University, Dissertation

    Google Scholar 

  • Jaguin J, Boulvais P, Boiron MC, Poujol M, Gapais D, Ruffet G, Briant N (2014) Stable isotopes (O, C) and fluid inclusion study of quartz–carbonate veins from the antimony line, Murchison Greenstone Belt. Am J Sci 314:1140–1170

    Article  Google Scholar 

  • Jourdan F, Renne P, Reimold U (2008) High-precision 40Ar/39Ar age of the Jänisjärvi impact structure (Russia). Earth Planet Sc Lett 265:438–449

    Article  Google Scholar 

  • Jourdan F, Frew A, Joly A, Mayers C, Evans N (2014) WA1ms: A ~ 2.61Ga muscovite standard for 40Ar/39Ar dating. Geochim Cosmochim Ac 141:3113–3126

    Article  Google Scholar 

  • Kargar S (2003) Analysis of polyphase deformation at northeast of Neyriz. Shiraz University, Dissertation

    Google Scholar 

  • Kreuzer O (2005) Intrusion–hosted mineralization in the charters towers goldfield, North Queensland: new isotopic and fluid inclusion constraints on the timing and origin of the auriferous veins. Econ Geol 100:1583–1603

    Article  Google Scholar 

  • Leach DL, Plumlee GS, Hofstra AH, Landis GP, Rowan EL, Viets JG (1991) Origin of late dolomite cement by CO2-saturated deep basin brines: evidence from the Ozark region, Central United States. Geology 19:348–351

    Article  Google Scholar 

  • Li WB, Chen YJ, Lai Y (2005) The Bainaimiao Cu deposit in Inner Mongolia, China: a possible orogenic–type Cu deposit. In: Mao J, Bierlein FP (eds) Mineral deposits research: meeting the global challenge, 2nd edn. Springer, Berlin, pp. 1321–1322

    Chapter  Google Scholar 

  • Marshall D, Meisser N, Taylor RP (1998) Fluid inclusion, stable isotope and Ar-Ar evidence for the age and origin of gold-bearing quartz veins at Mont Chemin, Switzerland. Mineral Petrol 62:147–165

    Article  Google Scholar 

  • McCuaig TC, Kerrich R (1998) P–T–t–deformation–fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999a) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, London

    Google Scholar 

  • McDougall I, Harrison TM (1999b) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York

    Google Scholar 

  • Mikucki EJ, Ridley JR (1993) The hydrothermal fluid of Archaean lode–gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages. Mineral Deposita 28:469–481

    Article  Google Scholar 

  • Mohajjel M, Fergusson CL, Sahandi MR (2003) Cretaceous–tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. J Asian Earth Sci 21:397–412

    Article  Google Scholar 

  • Moore F, Asadi S, Fattahi N (2011) 3D Modeling of quartz–sulfide veins and the role of metamorphic fluids in Jian copper deposit, North East Fars province. World Copper Congress, 1ST, IRIB International Conference Center, Tehran, Iran, 24th–26th October 2011, pp 64–73

  • Moritz R, Ghazban F, Singer BS (2006) Eocene gold ore formation at Muteh, Sanandaj-Sirjan tectonic zone, western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros orogen. Econ Geol 101:1497–1524

    Article  Google Scholar 

  • Mousivand F, Rastad E, Hoshino K, Watanabe M (2007) The Bavanat Cu–Zn–Ag orebody: first recognition of a Besshi–type VMS deposit in Iran. Neues Jb Mineral Abh 183:297–315

    Article  Google Scholar 

  • Mousivand F, Rastad E, Meffre S, Peter JM, Mohajjel M, Zaw K, Emami MH (2012) Age and tectonic setting of the Bavanat Cu–Zn–Ag Besshi–type volcanogenic massive sulfide deposit, southern Iran. Mineral Deposita 47:911–931

    Article  Google Scholar 

  • Phillips GN, Evans KA (2004) Role of CO2 in the formation of gold deposits. Nature 429:860–863

    Article  Google Scholar 

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28:689–718

    Article  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Perth

    Book  Google Scholar 

  • Pirajno F (2010) Intracontinental strike–slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Altay–Sayan (Siberia). J Geodyn 50:325–346

    Article  Google Scholar 

  • Pirajno F, Seltmann R, Yang LQ (2011) A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci Front 2:157–185

    Article  Google Scholar 

  • Qi JP, Chen YJ, Ni P, Lai Y, Ding JY, Song YW, Tang GJ (2007) Fluid inclusion constraints on the origin of the Lengshuibeigou Pb–Zn–Ag deposit, Henan province. Acta Petrol Sin 23:2119–2130

    Google Scholar 

  • Qiu HN, Wijbrans JR (2008) The Paleozoic metamorphic history of the central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions. Earth Planet Sc Lett 268:501–514

    Article  Google Scholar 

  • Rachid Nejad–Omran N, Emami MH, Sabzehei M, Rastad E, Bellon H, Pique A (2002) Lithostratigraphie et histoire paleozoıque a paleocene des complexes metamorphiques de la region de Muteh, zone de Sanandaj–Sirjan (Iran meridonal). Geoscience 334:1185–1191

    Article  Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction–modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Roedder E (1979) Fluid inclusions as samples of ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley and Sons, New York, pp. 684–731

    Google Scholar 

  • Roedder E (1984) Fluid inclusions, reviews in mineralogy. Mineralogical Society of America, Washington

    Google Scholar 

  • Sarkarinejad K, Azizi A (2008) Slip partitioning and inclined dextral transpression along the Zagros thrust system Iran. J Struct Geol 30:116–136

    Article  Google Scholar 

  • Schmidt Mumm A, Oberthür T, Vetter U, Blenkinsop TG (1997) High CO2 content of fluid inclusions in gold mineralisations in the Ashanti Belt, Ghana: a new category of ore forming fluids? Mineral Deposita 32:107–118

    Article  Google Scholar 

  • Seward TM, Barnes HL (1997) Metal transport by hydrothermal ore fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. John Wiley and Sons, New York, pp. 435–486

    Google Scholar 

  • Sheikholeslami MR (2002) Evolution structurale et métamorphique de la marge sud de la microplaque de l’Iran central: les complexes métamorphiques de la région de Neyriz (zone de Sanandaj–Sirjan). Université de Brest, Dissertation

    Google Scholar 

  • Sheikholeslami MR, Pique A, Mobayen P, Sabzehei M, Bellon H, Emami MH (2008) Tectono–metamorphic evolution of the Neyriz metamorphic complex, Quri–Kor–e–Sefid area (Sanandaj–Sirjan zone, SW Iran). J Asian Earth Sci 31:504–521

    Article  Google Scholar 

  • Shen P, Shen YC, Pan HD, Yang JB, Zhang R, Zhang YQ (2010) Baogutu porphyry Cu–Mo–Au deposit, west Junggar, Northwest China: petrology, alteration, and mineralization. Econ Geol 105:947–970

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHA (1985) Practical guide to fluid inclusion studies. Blackie and Sons, London

    Google Scholar 

  • Sibson RH, Robert F, Poulsen KH (1988) High–angle reverse faults, fluid–pressure cycling, and mesothermal gold–quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo– and cosmochronology. Earth Planet Sc Lett 36:359–362

    Article  Google Scholar 

  • Taghipour N, Moore F (2002) Textures and REE geochemistary in Jian copper occurrence. Iranian Journal of Crystallography and Mineralogy (in Persian) 10:51–65

    Google Scholar 

  • Tale Fazel E, Mehrabi B, Tabbakh Shabani AA (2015) Kuh-e Dom Fe–Cu–Au prospect, Anarak metallogenic complex, Central Iran: a geological, mineralogical and fluid inclusion study. Mineral Petrol 109:115–141

    Article  Google Scholar 

  • Tomkins AG (2015) On the source of orogenic gold. Geology 41:1255–1256

    Article  Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Article  Google Scholar 

  • Urban MTR, Hurai V, Konecny P, Chovan M (2006) Superdense CO2 inclusions in cretaceous quartz–stibnite veins hosted in low–grade Variscan basement of the western Carpathians, Slovakia. Mineral Deposita 40:867–873

    Article  Google Scholar 

  • Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47

    Article  Google Scholar 

  • Van den Kerkhof AM, Thiery R (2001) Carbonic inclusions. Lithos 55:49–68

    Article  Google Scholar 

  • Vasconcelos PM, Onoe AT, Kawashita K, Soares AJ, Teixeira W (2002) 40Ar/39Ar geochronology at the Instituto de Geociencias, USP: instrumentation, analytical procedures, and calibration. An Acad Bras Cienc 74:297–342

    Article  Google Scholar 

  • Vityk MO, Bodnar RJ (1995) Textural evolution of fluid inclusions in quartz during reequilibration, with applications to tectonic reconstruction. Contrib Mineral Petrol 121:309–323

    Article  Google Scholar 

  • Wen N, Boyce AJ, Fallick AE, Ashworth JR, Ixer RA (1996) The genesis of Cu–bearing quartz veins by metamorphic remobilization from stratiform red bed deposits, SW County Cork, Ireland. Mineral Petrol 57:73–89

    Article  Google Scholar 

  • Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 86:275–285

    Google Scholar 

  • Wilkinson JJ (2001) Fluid inclusions in hydrothermal ore deposits. Lithos 55:229–272

    Article  Google Scholar 

  • Yang XA, Liu JJ, Yang LB, Han SY, Sun XM, Wang H (2014) Fluid inclusion and isotope geochemistry of the Yangla copper deposit, Yunnan, China. Mineral Petrol 108:303–315

    Article  Google Scholar 

  • Yao Y, Murphy PJ, Robb LJ (2001) Fluid characteristics of granitoid–hosted gold deposits in the Birimian terrane of Ghana: a fluid inclusion microthermometric and Raman spectroscopic study. Econ Geol 96:1611–1643

    Article  Google Scholar 

  • Yardley BWD (2005) Metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100:613–631

    Google Scholar 

  • Yardley BWD, Graham JR (2002) The origins of salinity in metamorphic fluids. Geofluids 2:249–256

    Article  Google Scholar 

  • Yardley BWD, Gleeson S, Banks BD (2000) Origin of retrograde fluids in metamorphic rocks. J Geochem Explor 69–70:281–285

    Article  Google Scholar 

  • Yoo BC, Brown PE, White NC (2011) Hydrothermal fluid characteristics and genesis of Cu quartz veins in the Hwanggangri metallogenic district, Republic of Korea: mineralogy, fluid inclusion and stable isotope studies. J Geochem Explor 110:245–259

    Article  Google Scholar 

  • Zarasvandi A, Liaghat S, Moore F (2001) Geochemical prospecting project of copper in the Bavanat area, Fars Province. Geological Society of Iran Symposium, 5th, Tehran University, Iran, 27th–29th September 2001, Abstracts

  • Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusion. Chem Geol 64:335–350

    Article  Google Scholar 

  • Zheng Y, Li Z, Yan–Jing C, Ya–Jing Q, Chun–Fa L (2012) Geology, fluid inclusion geochemistry, and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, and their implications for ore genesis, Altay, Xinjiang, China. Ore Geol Rev 49:128–140

    Article  Google Scholar 

  • Zhengjie Q, Hongrui F, Xuan L, Bojie W, Fangfang H, Kuifeng Y, Shuanglong G, Fengchun Z (2015) Fluid inclusion and carbon–oxygen isotope studies of the Hujiayu Cu deposit, Zhongtiao Mountains, China: implications for syn–metamorphic copper remobilization. Acta Geol Sin–Engl 89:726–774

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Shiraz University research council (No. 236280–9/10). The authors would like to thank managing director of the Bavanat Corporation Ltd. for his help during fieldwork and sampling. Thanks are extended to Professor B. Rusk for his help with Ar/Ar isotope analysis. We are grateful to Professor A. Zarasvandi for doing the laser Raman spectroscopic analysis at Montanuniversität Leoben in Austria. Detailed comments of Editor-in-Chief J.G. Raith and two anonymous reviewers significantly improved the manuscript. We would like to extend our thanks to Professor D. Lentz for critically reading the manuscript and English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Asadi.

Additional information

Editorial handling: J. G. Raith

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, S., Moore, F. Fluid evolution in H2O–CO2–NaCl system and metallogenic analysis of the Surian metamorphic complex, Bavanat Cu deposit, Southwest Iran. Miner Petrol 111, 145–161 (2017). https://doi.org/10.1007/s00710-016-0457-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0457-z

Keywords

Navigation