Skip to main content
Log in

Textural evolution of synthetic fluid inclusions in quartz during reequilibration, with applications to tectonic reconstruction

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Experimental reequilibration of synthetic 10 wt% NaCl-H2O inclusions in natural quartz reveals that reequilibration textures show distinct differences depending upon the P-T path followed by the inclusion after formation. These differences combined with other geological information may be used to determine whether the sample (rock) followed a dominantly isothermal or isobaricP-T path following entrapment. The intensity and style of inclusion reequilibration features is related to the direction and magnitude of the departure of theP-T path from the original isochore for the inclusion. Thus, fluid inclusion reequilibration textures not only permit inclusionists to determine whether the rocks followed an isothermal or isobaric retrogradeP-T path, but also the magnitude of departure of this path from one that is isochoric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker RJ, Jansen JBH (1991) Experimental post-entrapment water loss from synthetic CO2−H2O inclusions in natural quartz. Geochim Cosmochim Acta 55:2215–2230.

    Article  Google Scholar 

  • Bakker RJ, Jansen JBH (1994) A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib Mineral Petrol, 116:7–20.

    Article  Google Scholar 

  • Bodnar RJ, Bethke PM (1979). Systematics of stretching of fluid inclusions. I. Fluorite and sphalerite at 1 atmosphere confining pressure. Econ Geol 79: 141–161.

    Google Scholar 

  • Bodnar RJ, Sterner SM (1987). Synthetic fluid inclusions. In: Barnes HL, Ulmer GC (eds). Hydrothermal experimental techniques. Wiley and Sons. New York, pp 423–457.

    Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for NaCl−H2O fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytechnic Inst State Univ. Blacksburg, VA, pp 117–131.

    Google Scholar 

  • Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions. VI. Quantitative evaluation of the decrepitation behavior of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorphic Geol 7:229–242.

    Article  Google Scholar 

  • Boullier AM, Michot G, Pêcher A, Barres O (1989) Diffusion and plastic deformation around fluid inclusions in synthetic quartz. In: Bridgwater D (ed) Fluid movements-element transport and the composittion of the deep crust. (NATO ASI series 281) Kluwer, Dordrecht, pp 345–360.

    Google Scholar 

  • Boullier AM, France-Lanord C, Dubessy J, Adamy J, Champenois M (1991). Linked fluid and tectonic evolution in the High Himalayan Mountains (Nepal). Contrib Mineral Petrol 107:358–372.

    Article  Google Scholar 

  • Chapman DS, Furlong KP (1992) Thermal state of the continental lower crust. in Fountain DM, Arculus R, Kay RW (eds) Continental lower crust. Elsevier, Amsterdam, pp. 179–199.

    Google Scholar 

  • Cordier P, Doukhan JC, Ramboz C (1994). Influence of dislocations on water leakage from fluid inclusions in quartz: a quantitative reappraisal. Eur J Mineral 6:745–752.

    Google Scholar 

  • Darimont A, Burke E, Touret J (1988). Nitrogen-rich metamorphic fluids in Devonian metasediments from Bastogne, Belgium. Bull Mineral 111: 321–330.

    Google Scholar 

  • Engelder T (1993) Stress regimes in the lithosphere. Princeton University Press. Princeton, New Jersey

    Google Scholar 

  • Evans B, Dresen G (1991) Deformation of earth materials: six easy pieces. (Reviews in Geophysics) quadriennial Rep IUGG, Suppl, pp 823–843

  • Gratier JP, Jenatton L (1984). Deformation by solution-deposition and reequilibration of fluid inclusions in crystals depending on temperature, internal pressure, and stress. J Struct Geol 6:189–200.

    Article  Google Scholar 

  • Griggs DT (1974) A model of hydrolytic weakening in quartz. J Geophys Res 79:1655–1661.

    Google Scholar 

  • Hall DL, Bodnar RJ (1989). Comparison of fluid inclusion decrepitation and acoustic emission protile of Westerly granite and Sioux quartzite. Tectonophysics 168:283–296.

    Article  Google Scholar 

  • Hall DL, Bodnar RJ (1990). Methane in fluid inclusions from granulites: a product of hydrogen diffusion? Geochim Cosmochim Acta 54: 641–652.

    Article  Google Scholar 

  • Hall DL, Sterner SM (1993) Preferential water loss from synthetic fluid inclusions. Contrib Mineral Petrol 114:489–500.

    Article  Google Scholar 

  • Hall DL, Bodnar RJ, Craig JR (1991) Fluid inclusion constraints on the uplift history of the metamorphosed massive sulfide deposits at Ducktown, Tenessee. J Metamorphic Geol 9:551–565.

    Article  Google Scholar 

  • Harley SL (1989) The origin of granulites: a metamorphic perspective. Geol Mag 126: 215–247.

    Article  Google Scholar 

  • Herms P, Schenk V (1992) Fluid inclusions in granulite-facies metapelites of the Hercynian ancient lower crust of the Serre, Calabria, Southern Italy. Contrib Mineral Petrol 112:393–404.

    Article  Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159

    Article  Google Scholar 

  • Hollister LS (1990) Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation. J Struct Geol 12:895–901

    Article  Google Scholar 

  • Hollister LS, Burruss RC, Henry DL, Hendel EM (1979) Physical conditions during uplift of metamorphic terranes, as evidenced by fluid inclusions. Bull Soc Fr Mineral Cristallogr 102:555–561.

    Google Scholar 

  • Hurai V, Horn E (1992) A boundary layer-induced immiscibility in naturally re-equilibrated H2O−CO2−NaCl inclusions from metamorphic quartz (Western Carpathians, Czechoslovakia). Contrib Mineral Petrol 112:414–427.

    Article  Google Scholar 

  • Kalyuzhnyi VA (1982) Principles and knowledge about mineralforming fluids (in Russian). Naukova Dumka Press, Kiev

    Google Scholar 

  • Kerkhof AM, van den, Berh HJ (1994). Cathodoluminescence studies of quartz as a tool for interpretation of fluid inclusion transposition (abstract). PACROFI V, Cuernavaca, Mexico, May, pp 108

    Google Scholar 

  • Kerrich R (1976) Some effects of tectonic recrystallization on fluid inclusions in vein quartz. Contrib Mineral Petrol 59:195–202.

    Article  Google Scholar 

  • Klemd R (1989)P-T evolution and fluid inclusion characteristics of retrograded eclogites, Münchberg Gneiss Complex, Germany. Contrib Mineral Petrol 102:221–229

    Article  Google Scholar 

  • Kotel'nikova ZA (1994) The response of fluid inclusions to changes in physicochemical parameters in the external medium (in Russian). Geokhimia 4:476–485

    Google Scholar 

  • Kreulen R (1977) CO2-rich fluids during regional metamorphism on Naxos, a study of fluid inclusions and stable isotopes. PhD thesis, Univ Utrecht

  • Lamb WM (1990) Fluid inclusions in granulites: peak versus. retrograde formation. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. Kluwer Acad Publ, The Netherlands, pp 419–433

    Google Scholar 

  • Lamb W, Valley JW (1984) Metamorphism of reduced granulites in a low-CO2 vapor-free environment. Nature 312:56–58

    Article  Google Scholar 

  • Leroy J (1979) Contribution à l'étalonnag de la pression interne des inclusions fluides lors de leur décrépitation. Bull Soc Fr Miněral et Cristallogr 102:584–593

    Google Scholar 

  • Lomov SB, Vityk MO (1990) Cracking halos around fluid inclusions in Carpathian “Marmarosh Diamonds”. Geochem Int 7:125–129

    Google Scholar 

  • Mavrogenes JA, Bodnar RJ (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochim Cosmochim Acta 58:141–148

    Article  Google Scholar 

  • Morgan GB, Chou I-Ming, Pasteris JD, Olsen, SN (1993) Re-equilibration of CO2 fluid inclusions at controlled hydrogen fugacities. J Metamorphic Geol 11:155–164

    Article  Google Scholar 

  • Mullis J (1987) Fluid inclusion studies during very low-grade metamorphism. In: Frey M (ed.) Low temperature metamorphism. Blackie, Glasgow, pp 162–199

    Google Scholar 

  • Olsen SN, Ferry JM (1995) A comparative fluid inclusion study of the Waterville and Sangerville (Vassalboro) Formations, south-central Maine. Contrib Mineral Petrol 118:396–413

    Article  Google Scholar 

  • Pasteris JD (1987) Fluid inclusions in mantle xenoliths. In: Nixon PH (ed) Mantle xenoliths. J Wiley and Sons, New York, pp 691–707

    Google Scholar 

  • Paterson MS (1978) Experimental rock deformation the brittle field. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Paterson MS (1987) Problems in the extrapolation of laboratory rheological data. Tectonophysics 133:33–43

    Article  Google Scholar 

  • Pêcher A (1981) Experimental decrepitation and reequilibration of fluid inclusions in synthetic quartz. Tectonophysics 78:567–583.

    Article  Google Scholar 

  • Pêcher A, Boullier AM (1984) Evolution À pression et température élevées d'inclusions fluides dans un quartz synthétique. Bull Mineral 107:139–153

    Google Scholar 

  • Philippot P (1993) Fluid-melt-rock interaction in mafic eclogites and coesite-bearing metasediments: constraints on volatile recycling during subduction. Chem Geol 108:93–112

    Article  Google Scholar 

  • Philippot P, Selverstone J (1991) Trace-element-rich brines in eclogite veins: implications of fluid composition and transport during subduction. Contrib Mineral Petrol 106:417–430

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. (Reviews in mineralogy 12) Mineral Soc Am, Washington, DC

    Google Scholar 

  • Selverstone J (1985) Petrologic constraints on imbrication, metamorphism, and uplift in the SW Tauern Window, Eastern Alps. Tectonics 4:687–704

    Article  Google Scholar 

  • Sisson VB, Lovelace RW, Maze WB, Bergman SC (1993) Direct observation of primary fluid-inclusion formation. Geology 21:751–754

    Article  Google Scholar 

  • Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineral Soc Am, Washington, DC

    Google Scholar 

  • Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural quartz: I. Compositional types synthesized and application to experimental geochemistry. Geochim Cosmochim Acta 48:2659–2668

    Article  Google Scholar 

  • Sterner SM, Bodnar RJ (1989) Synthetic fluid inclusions. VII. Reequilibration of fluid inclusions in quartz during laboratory simulated metamorphic burial and uplift. J Metamorphic Geol 7:243–260

    Article  Google Scholar 

  • Swanenberg HEC (1980) Fluid inclusions in high-grade metamorphic rocks from S.W. Norway. Geol Ultraiectina 25

  • Touret JLR (1977) The significance of fluid inclusions in metamorphic rocks. In: Fraser DG (ed) Thermodynamics in geology. Reidel Dordrecht, The Netherlands, pp 203–227

    Google Scholar 

  • Touret JLR (1992) Fluid inclusions in subducted rocks. In: LePichon X, Touret JLR, van Hinte J (eds) Le rôle des fluides dans les zones de subduction. Maison Descartes, Amsterdam, pp 385–403

    Google Scholar 

  • Touret JLR, Hartel THD (1990) Synmetamorphic fluid inclusions in granulites. In: Vielzeuf D, Vidal Ph (eds) Granulites and crustal evolution. Kluwer Acad Pub, The Netherlands, pp 397–418.

    Google Scholar 

  • Touret JLR, Marquis J (1994) Fluides profonds et conductivité électrique de la croûte continentale inferieure. C R Acad Sci Paris 318:1469–1482

    Google Scholar 

  • Tullis J (1990) Experimental studies of deformation mechanisms and microstructures in quartzo-feldspathie rocks. In: Barber DJ, Meredith PG (eds) Deformation processes in minerals, ceramics and rocks. Unwin Hyman Press, London, pp 190–227

    Google Scholar 

  • Vityk MO, Bodnar RJ (1994a) Applications of fluid inclusions in tectonic reconstruction: morphological analysis (abstract) PAC-ROFI V, Cuernavaca, Mexico, May, p 115

    Google Scholar 

  • Vityk MO, Bodnar RJ (1994b) The effect of temperature on fluid inclusion reequilibration behavior under conditions of compresive loading (abstract). 16th IMA General Meet September, Pisa, Italy, p 430

  • Vityk MO, Bodnar RJ, Schmidt CS (1994) Fluid inclusions as tectonothermobarometers: relation between pressure-temperature history and reequilibration morphology during crustal thickening. Geology 22:731–734.

    Article  Google Scholar 

  • Voznyak DK, Kalyuzhnyi VA (1976) Utilization of decrepitated inclusions for reconstruction ofPT conditions of mineral formation (on example of pegmatitic quartz from Volyn) (in Russian). Mineral Sb 30:31–40

    Google Scholar 

  • Wanamaker BJ, Wong TF, Evans B (1990) Decrepitation and crack healing of fluid inclusions in San Carlos olivine. J Geophys Res 95:15623–15641

    Google Scholar 

  • Wilkins RWT, Barkas JP (1978) Fluid inclusion deformation and recrystallization in granite tectonites. Contrib Mineral Petrol 65:293–299

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial responsibility: J. Touret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vityk, M.O., Bodnar, R.J. Textural evolution of synthetic fluid inclusions in quartz during reequilibration, with applications to tectonic reconstruction. Contr. Mineral. and Petrol. 121, 309–323 (1995). https://doi.org/10.1007/BF02688246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02688246

Keywords

Navigation