Skip to main content
Log in

Multi-stage evolution of xenotime–(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime–(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid‐borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U–Th–Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn JH, Buseck PR (1998) Transmission electron microscopy of muscovite alteration of tourmaline. Am Mineral 83:535–541

    Article  Google Scholar 

  • Åmli R (1975) Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia granite pegmatite, Froland, southern Norway. Am Mineral 60:607–620

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Beirau T, Bismayer U, Mihailova B, Paulmann C, Groat L (2010) Structural phenomena of metamict titanite: a synchrotron, X-ray diffraction and vibrational spectroscopic study. Phase Transit 83:694–702

    Article  Google Scholar 

  • Bernhard F, Walter F, Ettinger K, Taucher J, Mereiter K (1998) Pretulite, ScPO4, a new scandium mineral from the Styrian and Lower Austrian lazulite occurrences, Austria. Am Mineral 83:625–630

    Article  Google Scholar 

  • Bouška V, Johan Z (1972) New data on písekite. Lithos 5:93–103

    Article  Google Scholar 

  • Breiter K, Čopjaková R, Škoda R (2009) The involvement of F, CO2, and As in the alteration of Zr-Th-REE-bearing accessory minerals in the Hora Svaté Kateřiny A-type granite, Czech Republic. Can Mineral 47:1375–1398

    Article  Google Scholar 

  • Broska I, Petrík I (2014) Accessory phases in the genesis of the igneous rocks. In: Kumar S, Singh RN (eds) Modelling of Magmatic and Allied Processes. Soc Earth Sci, Ser, vol 83. Springer, Berlin, pp 109–149

  • Broska I, Petrík I (2015) Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia): evidence from mineral compositions and monazite dating. Geol Carpath 66:455–471

    Article  Google Scholar 

  • Broska I, Williams CT, Janák M, Nagy G (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82:71–83

    Article  Google Scholar 

  • Buck HM, Cooper MA, Černý P, Grice JD, Hawthorne (1999) Xenotime-(Yb), YbPO4, a new mineral species from the Shatford Lake pegmatite group, southeastern Manitoba, Canada. Can Mineral 37:1303–1306

    Google Scholar 

  • Budzyń B, Kozub-Budzyń GA (2015) The stability of xenotime in high Ca and Ca-Na systems, under experimental conditions of 250–350 °C and 200–400 MPa: the implications for fluid-mediated low-temperature processes in granitic rocks. Geol Quart 59:316–324

    Google Scholar 

  • Cícha J, Houzar S, Litochleb J, Novák M (2005) Excursion guidebook for mineralogical and geological localities (in Czech). Feldspar 2005: the Workshop of geologists from the Czech and Slovak museums, Prácheň Museum in Písek. 50 p

  • Čopjaková R, Novák M, Franců E (2011) Formation of authigenic monazite-(Ce) to monazite-(Nd) from Upper Carboniferous graywackes of the Drahany Upland: roles of the chemical composition of host rock and burial temperature. Lithos 127:373–385

    Article  Google Scholar 

  • Čopjaková R, Škoda R, Vašinová Galiová M, Novák M, Cempírek J (2015) Scandium- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF + LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). Am Mineral 100:1434–1451

    Article  Google Scholar 

  • Dekov VM, Caudros J, Shanks WC, Koski RA (2008) Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: evidence from mineralogical, geochemical and oxygen isotope studies. Chem Geol 247:171–194

    Article  Google Scholar 

  • Demartin F, Pilati T, Diella V, Donzelli S, Gentile P, Gramaccioli CM (1991) The chemical composition of xenotime from fissures and pegmatites in the Alps. Can Mineral 29:69–75

    Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    Article  Google Scholar 

  • Ewing RC (1976) Metamict mineral alteration: An implication for radioactive waste disposal. Science 192:1336–1337

    Article  Google Scholar 

  • Ewing RC (1994) The metamict state: 1993 - the centennial. Nucl Instrum Methods B 91:22–29

    Article  Google Scholar 

  • Ewing RC (2007) Ceramic matrices for plutonium disposition. Prog Nucl Energ 49:635–643

    Article  Google Scholar 

  • Ewing RC, Weber WJ (2010) Actinide waste forms and radiation effects. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol. 6. Springer, New York, pp 3813–3888

    Chapter  Google Scholar 

  • Fišera M (2000) Geological map of the Czech Republic 1:50 000. Sheet 22–41 Písek. Czech Geol Survey, Prague

  • Förster HJ (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany: part II. Xenotime. Am Mineral 83:1302–1315

    Article  Google Scholar 

  • Förster HJ, Ondrejka M, Uher P (2011) Mineralogical responses to subsolidus alteration of granitic rocks by oxidizing As-bearing fluids: REE arsenates and As-rich silicates from the Zinnwald granite, Eastern Erzgebirge, Germany. Can Mineral 49(4):913–930

    Article  Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectono-stratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179, pp 35–62

  • Geisler T, Schleicher H (2000) Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163:269–285

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, van Bronswijk W, Kurtz R (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Article  Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003a) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Geisler T, Pidgeon RT, Kurtz R, van Bronswijk W, Schleicher H (2003b) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513

    Article  Google Scholar 

  • Geisler T, Zhang M, Salje EKH (2003c) Recrystallization of almost fully amorphous zircon under hydrothermal conditions: an infrared spectroscopic study. J Nucl Mater 320:280–291

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Giarola M, Sanson A, Rahman A, Mariotto G, Bettinelli M, Speghini A, Cazzanelli E (2011) Vibrational dynamics of YPO4 and ScPO4 single crystals: an integrated study by polarized Raman spectroscopy and first-principles calculations. Phys Rev B 83:224302

    Article  Google Scholar 

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780

    Article  Google Scholar 

  • Harlov DE (2011) Formation of monazite and xenotime inclusions in fluorapatite megacrysts, Gloserheia Granite Pegmatite, Froland, Bamble Sector, southern Norway. Mineral Petrol 102:77–86

    Article  Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002) Fluid induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE, Budzyń B (2010) Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral Petrol 99:165–184

    Article  Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300

    Article  Google Scholar 

  • Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: Petrology, geochemistry and petrogenetic interpretation. Sbor geol Věd, ložisk Geol Miner 31:5–26. Prague

  • Hönig S, Čopjaková R, Škoda R, Novák M, Dolejš D, Leichmann J, Vašinová Galiová M (2014) Garnet as a major carrier of the Y and REE in the granitic rocks: an example from the layered anorogenic granite in the Brno Batholith, Czech Republic. Am Mineral 99:1922–1941

    Article  Google Scholar 

  • Horie K, Hidaka H, Gauthier-Lafaye F (2006) Elemental distribution in zircon: alteration and radiation-damage effects. Phys Chem Earth 31:587–592

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Janots E, Negro F, Brunet F, Goffe B, Engi M, Bouybaouène ML (2006) Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: monazite stability and geochronology. Lithos 87:214–234

    Article  Google Scholar 

  • Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118:75–86

    Article  Google Scholar 

  • Janoušek V, Finger F, Roberts MP, Frýda J, Pin C, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans R Soc Edinb Earth 95:141–159

    Article  Google Scholar 

  • Janoušek V, Vrána S, Erban V, Vokurka K, Drábek M (2008) Metabasic rocks in the Varied Group of the Moldanubian Zone, southern Bohemia - their petrology, geochemical character and possible petrogenesis. J Geosci 53:31–46

    Google Scholar 

  • Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 415–455

    Chapter  Google Scholar 

  • Kotková J (2007) High-pressure granulites of the Bohemian Massif: recent advances and open questions. J Geosci 52:45–71

    Google Scholar 

  • Lenz C, Nasdala L, Talla D, Hauzenberger C, Seitz R, Kolitsch U (2015) Laser-induced REE3+ photoluminescence of selected accessory minerals – an “advantageous artefact” in Raman spectroscopy. Chem Geol 415:1–16

    Article  Google Scholar 

  • London D (2011) Experimental syntesis and stability of tourmaline: a historical overview. Can Mineral 49:117–136

    Article  Google Scholar 

  • Majka J, Pršek J, Budzyń B, Bačík P, Barker A, Lodzinski M (2011) Fluorapatite-hingganite-(Y) coronas as products of fluid induced xenotime-(Y) breakdown in the Skoddefjellet pegmatite (Svalbard). Mineral Mag 75:159–167

    Article  Google Scholar 

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Medaris LG Jr, Beard BL, Johnson CM, Valley JW, Spicuzza MJ, Jelínek E, Mísař Z (1995) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for Variscan recycling of subducted lithosphere. Geol Rundsch 84:489–505

    Article  Google Scholar 

  • Medaris G Jr, Wang H, Jelínek E, Mihaljevič M, Jakeš P (2005) Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos 82:1–23

    Article  Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircon: a Raman spectroscopic study. Eur J Mineral 7:471–478

    Article  Google Scholar 

  • Nasdala L, Pidgeon RT, Wolf D, Irmer G (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Mineral Petrol 62:1–27

    Article  Google Scholar 

  • Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144

    Article  Google Scholar 

  • Nasdala L, Irmer G, Jonckheere R (2002a) Radiation damage ages: practical concept or impractical vision? - reply to two comments on “Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage”, and further discussion. Contrib Mineral Petrol 143:758–765

    Article  Google Scholar 

  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002b) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140

    Article  Google Scholar 

  • Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Mineral Petrol 86:1–27

    Article  Google Scholar 

  • Nasdala L, Kronz A, Wirth R, Váczi T, Pérez-Soba C, Willner A, Kennedy AK (2009) Alteration of radiation-damaged zircon and the related phenomenon of deficient electron microprobe totals. Geochim Cosmochim Acta 73:1637–1650

    Article  Google Scholar 

  • Nasdala L, Grötzschel R, Probst S, Bleisteiner B (2010a) Irradiation damage in monazite (CePO4): an example to establish the limits of Raman confocality and depth resolution. Can Mineral 48:351–359

    Article  Google Scholar 

  • Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010b) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300

    Article  Google Scholar 

  • Nasdala L, Beyssac O, Schopf JW, Bleisteiner B (2012) Application of Raman-based images in the Earth sciences. In: Zoubrir A (ed) Raman imaging – techniques and applications. Springer Series Opti, vol 168. Springer, Berlin, pp 145–187

    Google Scholar 

  • Nasdala L, Kostrovitsky S, Kennedy AK, Zeug M, Esenkulova SA (2014) Retention of radiation damage in zircon xenocrysts from kimberlites, Northern Yakutia. Lithos 206–207:252–261

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Mineral 80:21–26

    Article  Google Scholar 

  • Novák M, Cícha J (2009) The classification of granitic pegmatites of the Písek region (in Czech). Miner Special 8–19

  • Novák M, Černý P, Kimbrough DL, Taylor MC, Ercit TS (1998) U-Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Univ Carol Geol 42:309–310

    Google Scholar 

  • Pabst A (1952) The metamict state. Am Mineral 37:137–157

    Google Scholar 

  • Pan Y, Fleet ME (1996) Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine. Contrib Mineral Petrol 123:251–262

    Article  Google Scholar 

  • Pointer CM, Ashworth JR, Ixer RA (1988) The zircon-thorite mineral group in metasomatized granite, Ririwai, Nigeria. 1. Geochemistry and metastable solid solution of thorite and coffinite. Mineral Petrol 38:245–262

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–105

    Google Scholar 

  • Presser V, Glotzbach C (2009) Metamictization in zircon: Raman investigation following a Rietveld approach. Part II: Sampling depth implication and experimental data. J Raman Spectrosc 40:499–508

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem, vol 70. Mineral Soc Am, Chantilly, pp 87–124

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, crandallite, gorceixite and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632

    Article  Google Scholar 

  • Ruschel K, Nasdala L, Kronz A, Hanchar JM, Többens DM, Škoda R, Finger F, Möller A (2012) A Raman spectroscopic study on the structural disorder of monazite-(Ce). Mineral Petrol 105:41–55

    Article  Google Scholar 

  • Schmidt C, Rickers K, Wirth R, Nasdala L, Hanchar JM (2006) Low-temperature Zr mobility: an in situ synchrotron-radiation XRF study of the effect of radiation damage in zircon on the element release in H2O + HCl ± SiO2 fluids. Am Mineral 91:1211–1215

    Article  Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341:266–286

    Article  Google Scholar 

  • Seydoux-Guillaume AM, Wirth R, Nasdala L, Gottschalk M, Montel JM, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253

    Article  Google Scholar 

  • Sinha AK, Wayne DM, Hewitt DA (1992) The hydrothermal stability of zircon: preliminary experimental and isotopic studies. Geochim Cosmochim Acta 56:3551–3560

    Article  Google Scholar 

  • Škoda R, Novák M, Cícha J (2011) Uranium-niobium-rich alteration products after “písekite”, an intimate mixture of Y, REE, Nb, Ta, Ti-oxide minerals from the Obrázek I pegmatite, Písek, Czech Republic. J Geosci 56:317–325

    Google Scholar 

  • Škoda R, Plášil J, Jonsson E, Čopjaková R, Langhof J, Vašinová Galiová M (2015) Redefinition of thalénite-(Y) and discreditation of fluorthalénite-(Y): a re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities. Mineral Mag 79:965–983

    Article  Google Scholar 

  • Smith DGW, de St Jorre L, Reed SJB, Long JVP (1991) Zonally metamictized and other zircons from Thor Lake, Northwest Territories. Can Mineral 29:301–309

    Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonasawa paragneiss in the South Kitakami terrane, Northwest Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376

    Article  Google Scholar 

  • Talla D, Beran A, Škoda R, Losos Z (2011) On the presence of OH defects in the zircon-type phosphate mineral xenotime, (Y, REE)PO4. Am Mineral 96:1799–1808

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312 p

    Google Scholar 

  • Timmerman MJ (2008) Palaeozoic magmatism. In: McCann T (ed) The geology of central Europe. Volume 1: precambrian and Palaeozoic. Geological Society, London, pp 665–748

  • Tomašić N, Bermanec V, Gajović A, Linarić MR (2008) Metamict minerals: an insight into a relic crystal structure using XRD, Raman spectroscopy, SAED and HRTEM. Croat Chem Acta 81:391–400

    Google Scholar 

  • Törnroos R (1985) Metamict zircon from Mozambique. Bull Geol Soc Finl 57:181–195

    Google Scholar 

  • Váczi T (2014) A new, simple approximation for the deconvolution of instrumental broadening in spectroscopic band profiles. Appl Spectrosc 68:1274–1278

    Article  Google Scholar 

  • Vernilli F, Vernilli DC, Ferreira B, Silva G (2007) Characterization of a rare earth oxide obtained from xenotime mineral. Mater Charact 58:1–7

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical predictions of speciation in hydrothermal solutions to 350 °C at saturation water vapour pressure. Chem Geol 88:99–125

    Article  Google Scholar 

  • Wopenka B, Jolliff BL, Zinner E, Kremser DT (1996) Trace element zoning and incipient metamictization in a lunar zircon: application of three microprobe techniques. Am Mineral 81:902–912

    Article  Google Scholar 

  • Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan orogeny: extent, timescale and the formation of the European crust. Geol Soc Spec Publ 405, London, pp 169–196

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Lennox H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Matter 12:1915–1925

    Article  Google Scholar 

Download references

Acknowledgments

The samples investigated in this study were kindly provided from the mineral collection of the Prácheň Museum in Písek. This work was supported within EU project “Research group for radioactive waste repository and nuclear safety” (CZ.1.07/2.3.00/20.0052) to Z.L. and R.Š. R.C. acknowledges support within the research programme MUNI/A/1451/2014 of Masaryk University, and L.N. funding by the Austrian Science Fund (FWF) through project no. P244481–N19. We thank reviewers Igor Broska and Martin Ondrejka and Associate editor Anton Chakhmouradian for their constructive comments, which helped to significantly improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Losos.

Additional information

Editorial handling: A. R. Chakhmouradian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švecová, E., Čopjaková, R., Losos, Z. et al. Multi-stage evolution of xenotime–(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study. Miner Petrol 110, 747–765 (2016). https://doi.org/10.1007/s00710-016-0442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-016-0442-6

Keywords

Navigation